
OpenMP API 3.1 Fortran Page 1

© 2011 OpenMP ARB OMP0511F



Directives

OpenMP 3.1 API Fortran Syntax Quick Reference Card
OpenMP Application Program Interface (API) is a portable, scalable
model that gives shared-memory parallel programmers a simple
and flexible interface for developing parallel applications for
platforms ranging from the desktop to the supercomputer.

OpenMP supports multi-platform shared-memory parallel
programming in C/C++ and Fortran on all architectures, including
Unix platforms and Windows NT platforms.
A separate OpenMP reference card for C/C++ is also available.

[n.n.n] refers to sections in the OpenMP API Specification available at www.openmp.org.

An OpenMP executable directive applies to the succeeding
structured block. A structured-block is a block of executable
statements with a single entry at the top and a single exit at
the bottom, or an OpenMP construct.

Parallel [2.4]
The parallel construct forms a team of threads and starts
parallel execution.
!$omp parallel [clause[[,]clause] ...]

structured-block
!$omp end parallel
clause:

if(scalar-logical-expression)
num_threads(scalar-integer-expression)
default(private | firstprivate | shared | none)
private(list)
firstprivate(list)
shared(list)
copyin(list)
reduction({operator | intrinsic_procedure_name}: list)

Loop [2.5.1]
The loop construct specifies that the iterations of loops will
be distributed among and executed by the encountering
team of threads.
!$omp do [clause[[,]clause] ...]

do-loops
[!$omp end do [nowait]]
clause:

private(list)
firstprivate(list)
lastprivate(list)
reduction({operator | intrinsic_procedure_name}: list)
schedule(kind[, chunk_size])
collapse(n)
ordered

kind:
• static: Iterations are divided into chunks of size

chunk_size. Chunks are assigned to threads in the team
in round-robin fashion in order of thread number.

• dynamic: Each thread executes a chunk of iterations
then requests another chunk until no chunks remain to
be distributed.

• guided: Each thread executes a chunk of iterations then
requests another chunk until no chunks remain to be
assigned. The chunk sizes start large and shrink to the
indicated chunk_size as chunks are scheduled.

• auto: The decision regarding scheduling is delegated to
the compiler and/or runtime system.

• runtime: The schedule and chunk size are taken from
the run-sched-var ICV.

Sections [2.5.2]
The sections construct contains a set of structured blocks
that are to be distributed among and executed by the
encountering team of threads.

!$omp sections [clause[[,] clause] ...]
[!$omp section]
 structured-block
[!$omp section
 structured-block]
...

!$omp end sections [nowait]

clause:
private(list)
firstprivate(list)
lastprivate(list)
reduction({operator | intrinsic_procedure_name}: list)

Single [2.5.3]
The single construct specifies that the associated structured
block is executed by only one of the threads in the team
(not necessarily the master thread).
!$omp single [clause[[,]clause] ...]

structured-block
!$omp end single [end_clause[[,]end_clause] ...]
clause:

private(list)
firstprivate(list)

end_clause:
copyprivate(list)
nowait

Workshare [2.5.4]
The workshare construct divides the execution of the
enclosed structured block into separate units of work, each
executed only once by one thread.
!$omp workshare

structured-block
!$omp end workshare [nowait]
The structured block must consist of only the following:

array or scalar assignments
FORALL or WHERE statements
FORALL, WHERE, atomic, critical, or parallel constructs

Parallel Loop [2.6.1]
The parallel loop construct is a shortcut for specifying a
parallel construct containing one or more associated loops
and no other statements.
!$omp parallel do [clause[[,]clause] ...]

do-loop
[!$omp end parallel do]
clause:

Any accepted by the parallel or do directives with
identical meanings and restrictions.

Parallel Sections [2.6.2]
The parallel sections construct is a shortcut for specifying a
parallel construct containing one sections construct and no
other statements.
!$omp parallel sections [clause[[,]clause] ...]

[!$omp section]
 structured-block
[!$omp section
 structured-block]...

!$omp end parallel sections
clause:

Any of the clauses accepted by the parallel or sections
directives, with identical meanings and restrictions.

Parallel Workshare [2.6.3]
The parallel workshare construct is a shortcut for specifying
a parallel construct containing one workshare construct
and no other statements.
!$omp parallel workshare [clause[[,]clause] ...]

structured-block
!$omp end parallel workshare
clause:

Any of the clauses accepted by the parallel directive,
with identical meanings and restrictions.

Task [2.7.1]
The task construct defines an explicit task. The data
environment of the task is created according to the
data-sharing attribute clauses on the task construct
and any defaults that apply.
!$omp task [clause[[,]clause] ...]

structured-block
!$omp end task
clause:

if(scalar-logical-expression)
final(scalar-logical-expression)
untied

 (clause continues in next column)

default(private | firstprivate | shared | none)
mergeable
private(list)
firstprivate(list)
shared(list)

Taskyield [2.7.2]
The taskyield construct specifies that the current task can
be suspended in favor of execution of a different task.
!$omp taskyield

Master [2.8.1]
The master construct specifies a structured block that is
executed by the master thread of the team.
!$omp master

structured-block
!$omp end master

Critical [2.8.2]
The critical construct restricts execution of the associated
structured block to a single thread at a time.
!$omp critical [(name)]

structured-block
!$omp end critical [(name)]

Barrier [2.8.3]
The barrier construct specifies an explicit barrier at the
point at which the construct appears.
!$omp barrier

Taskwait [2.8.4]
The taskwait construct specifies a wait on the completion of
child tasks of the current task.
!$omp taskwait

Atomic [2.8.5]
The atomic construct ensures that a specific storage
location is updated atomically, rather than exposing it to the
possibility of multiple, simultaneous writing threads. The
atomic construct may take one of the following forms:

!$omp atomic read
capture-stmt

[!$omp end atomic]

!$omp atomic write
write-stmt

[!$omp end atomic]

!$omp atomic capture
update-stmt
capture-stmt

!$omp end atomic

!$omp atomic capture
capture-stmt
update-stmt

!$omp end atomic

!$omp atomic [update]
update-stmt

[!$omp end atomic]

capture-stmt, write-stmt, or update-stmt may be one of the
following forms:

if clause is... statement:
read or capture v = x
write x = expr
update, capture, or is
not present

x = x operator expr
x = expr operator x
x = intrinsic_procedure_name (x, expr_list)
x = intrinsic_procedure_name (expr_list, x)

intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, IEOR
operator is one of +, *, -, /, .AND., .OR., .EQV., .NEQV.

Flush [2.8.6]
The flush construct executes the OpenMP flush operation,
which makes a thread’s temporary view of memory
consistent with memory, and enforces an order on the
memory operations of the variables.
!$omp flush [(list)]

(Directives continue >)

®

Fortran

OpenMP API 3.1 Fortran Page 2

© 2011 OpenMP ARB OMP0511F



Clauses Environment Variables

The set of clauses that is valid on a particular
directive is described with the directive. Most
clauses accept a comma-separated list of list
items. All list items appearing in a clause must
be visible.

Data Sharing Attribute Clauses [2.9.3]
Data-sharing attribute clauses apply only
to variables whose names are visible in the
construct on which the clause appears.

default(private | firstprivate | shared | none)
Controls the default data-sharing attributes of
variables that are referenced in a parallel or
task construct.

shared(list)
Declares one or more list items to be shared
by tasks generated by a parallel or task
construct.

private(list)
Declares one or more list items to be private
to a task.

firstprivate(list)
Declares one or more list items to be private
to a task, and initializes each of them with the
value that the corresponding original item has
when the construct is encountered.
lastprivate(list)
Declares one or more list items to be
private to an implicit task, and causes the
corresponding original item to be updated
after the end of the region.

reduction(
{operator | intrinsic_procedure_name} :list)

Declares accumulation into the list items
using the indicated associative operator.
Accumulation occurs into a private copy for
each list item which is then combined with
the original item.

Operators for reduction (initialization values)
+ (0) .eqv. (.true.)
* (1) .neqv. (.false.)
- (0) iand (All bits on)
.and. (.true.) ior (0)
.or. (.false.) ieor (0)
max (Least number in reduction list item type)
min (Largest number in reduction list item type)

Data Copying Clauses [2.9.4]
These clauses support the copying of
data values from private or threadprivate
variables on one implicit task or thread to
the corresponding variables on other implicit
tasks or threads in the team.

copyin(list)
Copies the value of the master thread’s
threadprivate variable to the threadprivate
variable of each other member of the team
executing the parallel region.

copyprivate(list)
Broadcasts a value from the data
environment of one implicit task to the data
environments of the other implicit tasks
belonging to the parallel region.

Environment variables are described
in section [4] of the API specification.
Environment variable names are upper
case, and the values assigned to them are
case insensitive and may have leading and
trailing white space.

OMP_SCHEDULE type[,chunk]
Sets the run-sched-var ICV for the
runtime schedule type and chunk size.
Valid OpenMP schedule types are static,
dynamic, guided, or auto. chunk is a
positive integer that specifies chunk size.

OMP_NUM_THREADS list
Sets the nthreads-var ICV for the number
of threads to use for parallel regions.

OMP_DYNAMIC dynamic
Sets the dyn-var ICV for the dynamic
adjustment of threads to use for parallel
regions. Valid values for dynamic are true
or false.

OMP_PROC_BIND bind
Sets the value of the global bind-var ICV.
The value of this environment variable
must be true or false.

OMP_NESTED nested
Sets the nest-var ICV to enable or to
disable nested parallelism. Valid values for
nested are true or false.

OMP_STACKSIZE size[B | K | M | G]
Sets the stacksize-var ICV that specifies
the size of the stack for threads created
by the OpenMP implementation. size is a
positive integer that specifies stack size.
If unit is not specified, size is measured in
kilobytes (K).

OMP_WAIT_POLICY policy
Sets the wait-policy-var ICV that controls
the desired behavior of waiting threads.
Valid values for policy are ACTIVE (waiting
threads consume processor cycles while
waiting) and PASSIVE.

OMP_MAX_ACTIVE_LEVELS levels
Sets the max-active-levels-var ICV that
controls the maximum number of nested
active parallel regions.

OMP_THREAD_LIMIT limit
Sets the thread-limit-var ICV that controls
the maximum number of threads
participating in the OpenMP program.

Copyright © 2011 OpenMP Architecture Review Board. Permission to copy without fee all or part of this material
is granted, provided the OpenMP Architecture Review Board copyright notice and the title of this document
appear. Notice is given that copying is by permission of the OpenMP Architecture Review Board. Products or
publications based on one or more of the OpenMP specifications must acknowledge the copyright by displaying
the following statement: “OpenMP is a trademark of the OpenMP Architecture Review Board. Portions of
this product/publication may have been derived from the OpenMP Language Application Program Interface
Specification.”

Directives (continued)
Ordered [2.8.7]
The ordered construct specifies a structured
block in a loop region that will be executed
in the order of the loop iterations. This
sequentializes and orders the code within an
ordered region while allowing code outside
the region to run in parallel.
!$omp ordered

structured-block
!$omp end ordered

Threadprivate [2.9.2]
The threadprivate directive specifies that
variables are replicated, each thread with its
own copy.
!$omp threadprivate(list)
list:

Comma-separated list of named variables
and named common blocks appearing
between slashes.

Reference card production by Miller & Mattson www.millermattson.com

Execution Environment Routines [3.2]
The following execution environment
routines affect and monitor threads,
processors, and the parallel environment.

subroutine omp_set_num_threads(
num_threads)

integer num_threads
Affects the number of threads used for sub-
sequent parallel regions that do not specify
a num_threads clause.

integer function omp_get_num_threads()
Returns the number of threads in the current
team.

integer function omp_get_max_threads()
Returns the maximum number of threads
that could be used to form a new team using
a parallel construct without a num_threads
clause.

integer function omp_get_thread_num()
Returns the ID of the encountering thread
where ID ranges from zero to the size of the
team minus 1.

integer function omp_get_num_procs()
Returns the number of processors available to
the program.

logical function omp_in_parallel()
Returns true if the call to the routine is
enclosed by an active parallel region.

subroutine omp_set_dynamic(
dynamic_threads)

logical dyamic_threads
Enables or disables dynamic adjustment of
the number of threads available by setting
the value of the dyn-var ICV.

logical function omp_get_dynamic()
Returns the value of the dyn-var ICV,
determining whether dynamic adjustment of
the number of threads is enabled or disabled.

subroutine omp_set_nested(nested)
logical nested
Enables or disables nested parallelism, by
setting the nest-var ICV.

logical function omp_get_nested()
Returns the value of the nest-var ICV, which
determines if nested parallelism is enabled
or disabled.

subroutine omp_set_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier
Affects the schedule that is applied when
runtime is used as schedule kind, by setting
the value of the run-sched-var ICV.
kind is one of static, dynamic, guided, auto,
or an implementation-defined schedule. See
loop construct [2.5.1] for descriptions.

Runtime Library Routines

subroutine omp_get_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier
Returns the value of run-sched-var ICV,
which is the schedule applied when
runtime schedule is used.
See kind described for omp_set_schedule.

integer function omp_get_thread_limit()
Returns the value of the thread-limit-var
ICV, which is the maximum number of
OpenMP threads available to the program.

subroutine omp_set_max_active_levels(
max_levels)

integer max_levels
Limits the number of nested active parallel
regions, by setting max-active-levels-var
ICV.

integer function omp_get_max_active_levels()
Returns the value of max-active-levels-var
ICV, which determines the maximum
number of nested active parallel regions.

integer function omp_get_level()
Returns the number of nested parallel
regions enclosing the task that contains
the call.

integer function omp_get_ancestor_thread_num(
level)

integer level
Returns, for a given nested level of the
current thread, the thread number of the
ancestor or the current thread.

integer function omp_get_team_size(level)
integer level
Returns, for a given nested level of the
current thread, the size of the thread
team to which the ancestor or the current
thread belongs.

integer function omp_get_active_level()
Returns the number of nested, active
parallel regions enclosing the task that
contains the call.

logical function omp_in_final()
Returns true if the routine is executed in a
final or included task region; otherwise, it
returns false.

Lock Routines [3.3]
The following lock routines support
synchronization with OpenMP locks.

subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar
subroutine omp_init_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
These routines initialize an OpenMP lock.

subroutine omp_destroy_lock(svar)
integer (kind=omp_lock_kind) svar
subroutine omp_destroy_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
These routines ensure that the OpenMP
lock is uninitialized.

subroutine omp_set_lock(svar)
integer (kind=omp_lock_kind) svar
subroutine omp_set_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
These routines provide a means of setting
an OpenMP lock.

subroutine omp_unset_lock(svar)
integer (kind=omp_lock_kind) svar
subroutine omp_unset_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
These routines provide a means of
unsetting an OpenMP lock.

logical function omp_test_lock(svar)
integer (kind=omp_lock_kind) svar
integer function omp_test_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
These routines attempt to set an OpenMP
lock but do not suspend execution of the
task executing the routine.

Timing Routines [3.4]
The following timing routines support a
portable wall clock timer.

double precision function omp_get_wtime()
Returns elapsed wall clock time in seconds.

double precision function omp_get_wtick()
Returns the precision of the timer used by
omp_get_wtime.

