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1

CHAPTER 1

Introduction

This document specifies a collection of compiler directives, library functions, and

environment variables that can be used to specify shared-memory parallelism in C

and C++ programs. The functionality described in this document is collectively

known as the OpenMP C/C++ Application Program Interface (API). The goal of this

specification is to provide a model for parallel programming that allows a program

to be portable across shared-memory architectures from different vendors. The

OpenMP C/C++ API will be supported by compilers from numerous vendors. More

information about OpenMP, including the OpenMP Fortran Application Program
Interface, can be found at the following web site:

http://www.openmp.org

The directives, library functions, and environment variables defined in this

document will allow users to create and manage parallel programs while permitting

portability. The directives extend the C and C++ sequential programming model

with single program multiple data (SPMD) constructs, work-sharing constructs, and

synchronization constructs, and they provide support for the sharing and

privatization of data. Compilers that support the OpenMP C and C++ API will

include a command-line option to the compiler that activates and allows

interpretation of all OpenMP compiler directives.

1.1 Scope
This specification covers only user-directed parallelization, wherein the user

explicitly specifies the actions to be taken by the compiler and run-time system in

order to execute the program in parallel. OpenMP C and C++ implementations are

not required to check for dependencies, conflicts, deadlocks, race conditions, or other

problems that result in incorrect program execution. The user is responsible for

ensuring that the application using the OpenMP C and C++ API constructs executes

correctly. Compiler-generated automatic parallelization and directives to the

compiler to assist such parallelization are not covered in this document.
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2 OpenMP C/C++ • Version 2.0  March 2002

1.2 Definition of Terms
The following terms are used in this document:

barrier A synchronization point that must be reached by all threads in a team.

Each thread waits until all threads in the team arrive at this point. There

are explicit barriers identified by directives and implicit barriers created by

the implementation.

construct A construct is a statement. It consists of a directive and the subsequent

structured block. Note that some directives are not part of a construct. (See

openmp-directive in Appendix C).

directive A C or C++ #pragma followed by the omp identifier, other text, and a new

line. The directive specifies program behavior.

dynamic extent All statements in the lexical extent, plus any statement inside a function

that is executed as a result of the execution of statements within the lexical

extent. A dynamic extent is also referred to as a region.

lexical extent Statements lexically contained within a structured block.

master thread The thread that creates a team when a parallel region is entered.

parallel region Statements that bind to an OpenMP parallel construct and may be

executed by multiple threads.

private A private variable names a block of storage that is unique to the thread

making the reference. Note that there are several ways to specify that a

variable is private: a definition within a parallel region, a

threadprivate directive, a private , firstprivate ,

lastprivate , or reduction clause, or use of the variable as a for
loop control variable in a for loop immediately following a for or

parallel for directive.

region A dynamic extent.

serial region Statements executed only by the master thread outside of the dynamic

extent of any parallel region.

serialize To execute a parallel construct with a team of threads consisting of only a

single thread (which is the master thread for that parallel construct), with

serial order of execution for the statements within the structured block (the

same order as if the block were not part of a parallel construct), and with

no effect on the value returned by omp_in_parallel() (apart from the

effects of any nested parallel constructs).
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Chapter 1 Introduction 3

shared A shared variable names a single block of storage. All threads in a team

that access this variable will access this single block of storage.

structured block A structured block is a statement (single or compound) that has a single

entry and a single exit. No statement is a structured block if there is a jump

into or out of that statement (including a call to longjmp (3C) or the use of

throw , but a call to exit is permitted). A compound statement is a

structured block if its execution always begins at the opening { and always

ends at the closing } . An expression statement, selection statement,

iteration statement, or try block is a structured block if the corresponding

compound statement obtained by enclosing it in { and } would be a

structured block. A jump statement, labeled statement, or declaration

statement is not a structured block.

team One or more threads cooperating in the execution of a construct.

thread An execution entity having a serial flow of control, a set of private

variables, and access to shared variables.

variable An identifier, optionally qualified by namespace names, that names an

object.

1.3 Execution Model
OpenMP uses the fork-join model of parallel execution. Although this fork-join

model can be useful for solving a variety of problems, it is somewhat tailored for

large array-based applications. OpenMP is intended to support programs that will

execute correctly both as parallel programs (multiple threads of execution and a full

OpenMP support library) and as sequential programs (directives ignored and a

simple OpenMP stubs library). However, it is possible and permitted to develop a

program that does not behave correctly when executed sequentially. Furthermore,

different degrees of parallelism may result in different numeric results because of

changes in the association of numeric operations. For example, a serial addition

reduction may have a different pattern of addition associations than a parallel

reduction. These different associations may change the results of floating-point

addition.

A program written with the OpenMP C/C++ API begins execution as a single

thread of execution called the master thread. The master thread executes in a serial

region until the first parallel construct is encountered. In the OpenMP C/C++ API,

the parallel directive constitutes a parallel construct. When a parallel construct is

encountered, the master thread creates a team of threads, and the master becomes

master of the team. Each thread in the team executes the statements in the dynamic

extent of a parallel region, except for the work-sharing constructs. Work-sharing

constructs must be encountered by all threads in the team in the same order, and the
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4 OpenMP C/C++ • Version 2.0  March 2002

statements within the associated structured block are executed by one or more of the

threads. The barrier implied at the end of a work-sharing construct without a

nowait clause is executed by all threads in the team.

If a thread modifies a shared object, it affects not only its own execution

environment, but also those of the other threads in the program. The modification is

guaranteed to be complete, from the point of view of one of the other threads, at the

next sequence point (as defined in the base language) only if the object is declared to

be volatile. Otherwise, the modification is guaranteed to be complete after first the

modifying thread, and then (or concurrently) the other threads, encounter a flush
directive that specifies the object (either implicitly or explicitly). Note that when the

flush directives that are implied by other OpenMP directives are not sufficient to

ensure the desired ordering of side effects, it is the programmer's responsibility to

supply additional, explicit flush directives.

Upon completion of the parallel construct, the threads in the team synchronize at an

implicit barrier, and only the master thread continues execution. Any number of

parallel constructs can be specified in a single program. As a result, a program may

fork and join many times during execution.

The OpenMP C/C++ API allows programmers to use directives in functions called

from within parallel constructs. Directives that do not appear in the lexical extent of

a parallel construct but may lie in the dynamic extent are called orphaned directives.

Orphaned directives give programmers the ability to execute major portions of their

program in parallel with only minimal changes to the sequential program. With this

functionality, users can code parallel constructs at the top levels of the program call

tree and use directives to control execution in any of the called functions.

Unsynchronized calls to C and C++ output functions that write to the same file may

result in output in which data written by different threads appears in

nondeterministic order. Similarly, unsynchronized calls to input functions that read

from the same file may read data in nondeterministic order. Unsynchronized use of

I/O, such that each thread accesses a different file, produces the same results as

serial execution of the I/O functions.

1.4 Compliance
An implementation of the OpenMP C/C++ API is OpenMP-compliant if it recognizes

and preserves the semantics of all the elements of this specification, as laid out in

Chapters 1, 2, 3, 4, and Appendix C. Appendices A, B, D, E, and F are for information

purposes only and are not part of the specification. Implementations that include

only a subset of the API are not OpenMP-compliant.
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Chapter 1 Introduction 5

The OpenMP C and C++ API is an extension to the base language that is supported

by an implementation. If the base language does not support a language construct or

extension that appears in this document, the OpenMP implementation is not

required to support it.

All standard C and C++ library functions and built-in functions (that is, functions of

which the compiler has specific knowledge) must be thread-safe. Unsynchronized

use of thread–safe functions by different threads inside a parallel region does not

produce undefined behavior. However, the behavior might not be the same as in a

serial region. (A random number generation function is an example.)

The OpenMP C/C++ API specifies that certain behavior is implementation-defined. A

conforming OpenMP implementation is required to define and document its

behavior in these cases. See Appendix E, page 97, for a list of implementation-

defined behaviors.

1.5 Normative References
■ ISO/IEC 9899:1999, Information Technology - Programming Languages - C. This

OpenMP API specification refers to ISO/IEC 9899:1999 as C99.

■ ISO/IEC 9899:1990, Information Technology - Programming Languages - C. This

OpenMP API specification refers to ISO/IEC 9899:1990 as C90.

■ ISO/IEC 14882:1998, Information Technology - Programming Languages - C++. This

OpenMP API specification refers to ISO/IEC 14882:1998 as C++.

Where this OpenMP API specification refers to C, reference is made to the base

language supported by the implementation.

1.6 Organization
■ Directives (see Chapter 2).

■ Run-time library functions (see Chapter 3).

■ Environment variables (see Chapter 4).

■ Examples (see Appendix A).

■ Stubs for the run-time library (see Appendix B).

■ OpenMP Grammar for C and C++ (see Appendix C).

■ Using the schedule clause (see Appendix D).

■ Implementation-defined behaviors in OpenMP C/C++ (see Appendix E).

■ New features in OpenMP C/C++ Version 2.0 (see Appendix F).
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CHAPTER 2

Directives

Directives are based on #pragma directives defined in the C and C++ standards.

Compilers that support the OpenMP C and C++ API will include a command-line

option that activates and allows interpretation of all OpenMP compiler directives.

2.1 Directive Format
The syntax of an OpenMP directive is formally specified by the grammar in

Appendix C, and informally as follows:

Each directive starts with #pragma omp , to reduce the potential for conflict with

other (non-OpenMP or vendor extensions to OpenMP) pragma directives with the

same names. The remainder of the directive follows the conventions of the C and

C++ standards for compiler directives. In particular, white space can be used before

and after the #, and sometimes white space must be used to separate the words in a

directive. Preprocessing tokens following the #pragma omp are subject to macro

replacement.

Directives are case-sensitive. The order in which clauses appear in directives is not

significant. Clauses on directives may be repeated as needed, subject to the

restrictions listed in the description of each clause. If variable-list appears in a clause,

it must specify only variables. Only one directive-name can be specified per directive.

For example, the following directive is not allowed:

#pragma omp directive-name [clause[ [,] clause]...] new-line

/* ERROR - multiple directive names not allowed */
#pragma omp parallel barrier
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An OpenMP directive applies to at most one succeeding statement, which must be a

structured block.

2.2 Conditional Compilation
The _OPENMPmacro name is defined by OpenMP-compliant implementations as the

decimal constant yyyymm, which will be the year and month of the approved

specification. This macro must not be the subject of a #define or a #undef
preprocessing directive.

If vendors define extensions to OpenMP, they may specify additional predefined

macros.

2.3 parallel Construct
The following directive defines a parallel region, which is a region of the program

that is to be executed by multiple threads in parallel. This is the fundamental

construct that starts parallel execution.

The clause is one of the following:

#ifdef _OPENMP
iam = omp_get_thread_num() + index;
#endif

#pragma omp parallel [clause[ [, ]clause] ...] new-line
structured-block

if( scalar-expression)

private( variable-list)

firstprivate( variable-list)

default(shared | none)

shared( variable-list)

copyin( variable-list)

reduction( operator: variable-list)

num_threads( integer-expression)
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When a thread encounters a parallel construct, a team of threads is created if one of

the following cases is true:

■ No if clause is present.

■ The if expression evaluates to a nonzero value.

This thread becomes the master thread of the team, with a thread number of 0, and

all threads in the team, including the master thread, execute the region in parallel. If

the value of the if expression is zero, the region is serialized.

To determine the number of threads that are requested, the following rules will be

considered in order. The first rule whose condition is met will be applied:

1. If the num_threads clause is present, then the value of the integer expression is

the number of threads requested.

2. If the omp_set_num_threads library function has been called, then the value

of the argument in the most recently executed call is the number of threads

requested.

3. If the environment variable OMP_NUM_THREADSis defined, then the value of this

environment variable is the number of threads requested.

4. If none of the methods above were used, then the number of threads requested is

implementation-defined.

If the num_threads clause is present then it supersedes the number of threads

requested by the omp_set_num_threads library function or the

OMP_NUM_THREADSenvironment variable only for the parallel region it is applied

to. Subsequent parallel regions are not affected by it.

The number of threads that execute the parallel region also depends upon whether

or not dynamic adjustment of the number of threads is enabled. If dynamic

adjustment is disabled, then the requested number of threads will execute the

parallel region. If dynamic adjustment is enabled then the requested number of

threads is the maximum number of threads that may execute the parallel region.

If a parallel region is encountered while dynamic adjustment of the number of

threads is disabled, and the number of threads requested for the parallel region

exceeds the number that the run-time system can supply, the behavior of the

program is implementation-defined. An implementation may, for example, interrupt

the execution of the program, or it may serialize the parallel region.

The omp_set_dynamic library function and the OMP_DYNAMICenvironment

variable can be used to enable and disable dynamic adjustment of the number of

threads.
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The number of physical processors actually hosting the threads at any given time is

implementation-defined. Once created, the number of threads in the team remains

constant for the duration of that parallel region. It can be changed either explicitly

by the user or automatically by the run-time system from one parallel region to

another.

The statements contained within the dynamic extent of the parallel region are

executed by each thread, and each thread can execute a path of statements that is

different from the other threads. Directives encountered outside the lexical extent of

a parallel region are referred to as orphaned directives.

There is an implied barrier at the end of a parallel region. Only the master thread of

the team continues execution at the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel

construct, it creates a new team, and it becomes the master of that new team. Nested

parallel regions are serialized by default. As a result, by default, a nested parallel

region is executed by a team composed of one thread. The default behavior may be

changed by using either the runtime library function omp_set_nested or the

environment variable OMP_NESTED. However, the number of threads in a team that

execute a nested parallel region is implementation-defined.

Restrictions to the parallel directive are as follows:

■ At most one if clause can appear on the directive.

■ It is unspecified whether any side effects inside the if expression or

num_threads expression occur.

■ A throw executed inside a parallel region must cause execution to resume within

the dynamic extent of the same structured block, and it must be caught by the

same thread that threw the exception.

■ Only a single num_threads clause can appear on the directive. The

num_threads expression is evaluated outside the context of the parallel region,

and must evaluate to a positive integer value.

■ The order of evaluation of the if and num_threads clauses is unspecified.

Cross References:
■ private , firstprivate , default , shared , copyin , and reduction

clauses, see Section 2.7.2 on page 25.

■ OMP_NUM_THREADSenvironment variable, Section 4.2 on page 48.

■ omp_set_dynamic library function, see Section 3.1.7 on page 39.

■ OMP_DYNAMICenvironment variable, see Section 4.3 on page 49.

■ omp_set_nested function, see Section 3.1.9 on page 40.

■ OMP_NESTEDenvironment variable, see Section 4.4 on page 49.

■ omp_set_num_threads library function, see Section 3.1.1 on page 36.
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2.4 Work-sharing Constructs
A work-sharing construct distributes the execution of the associated statement

among the members of the team that encounter it. The work-sharing directives do

not launch new threads, and there is no implied barrier on entry to a work-sharing

construct.

The sequence of work-sharing constructs and barrier directives encountered must

be the same for every thread in a team.

OpenMP defines the following work-sharing constructs, and these are described in

the sections that follow:

■ for directive

■ sections directive

■ single directive

2.4.1 for Construct
The for directive identifies an iterative work-sharing construct that specifies that

the iterations of the associated loop will be executed in parallel. The iterations of the

for loop are distributed across threads that already exist in the team executing the

parallel construct to which it binds. The syntax of the for construct is as follows:

The clause is one of the following:

#pragma omp for [clause[[, ] clause] ... ] new-line
for-loop

private( variable-list)

firstprivate( variable-list)

lastprivate( variable-list)

reduction( operator: variable-list)

ordered

schedule( kind[,  chunk_size])

nowait

1

2
3
4
5

6
7

8
9

10

11

12

13

14
15
16
17

18
19

20

21

22

23

24

25

26

27

28



12 OpenMP C/C++ • Version 2.0  March 2002

The for directive places restrictions on the structure of the corresponding for loop.

Specifically, the corresponding for loop must have canonical shape:

Note that the canonical form allows the number of loop iterations to be computed on

entry to the loop. This computation is performed with values in the type of var, after

integral promotions. In particular, if value of b - lb + incr cannot be represented in

that type, the result is indeterminate. Further, if logical-op is < or <= then incr-expr
must cause var to increase on each iteration of the loop. If logical-op is > or >= then

incr-expr must cause var to decrease on each iteration of the loop.

The schedule clause specifies how iterations of the for loop are divided among

threads of the team. The correctness of a program must not depend on which thread

executes a particular iteration. The value of chunk_size, if specified, must be a loop

invariant integer expression with a positive value. There is no synchronization

during the evaluation of this expression. Thus, any evaluated side effects produce

indeterminate results. The schedule kind can be one of the following:

for ( init-expr; var logical-op b; incr-expr)

init-expr One of the following:

var = lb
integer-type var = lb

incr-expr One of the following:

++var
var++
-- var
var--
var += incr
var -= incr
var = var + incr
var = incr + var
var = var - incr

var A signed integer variable. If this variable would otherwise be

shared, it is implicitly made private for the duration of the for .

This variable must not be modified within the body of the for
statement. Unless the variable is specified lastprivate , its

value after the loop is indeterminate.

logical-op One of the following:

<
<=
>
>=

lb, b, and incr Loop invariant integer expressions. There is no synchronization

during the evaluation of these expressions. Thus, any evaluated side

effects produce indeterminate results.
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In the absence of an explicitly defined schedule clause, the default schedule is

implementation-defined.

An OpenMP-compliant program should not rely on a particular schedule for correct

execution. A program should not rely on a schedule kind conforming precisely to the

description given above, because it is possible to have variations in the

implementations of the same schedule kind across different compilers. The

descriptions can be used to select the schedule that is appropriate for a particular

situation.

The ordered clause must be present when ordered directives bind to the for
construct.

There is an implicit barrier at the end of a for construct unless a nowait clause is

specified.

TABLE 2-1 schedule clause kind values

static When schedule(static, chunk_size) is specified, iterations are

divided into chunks of a size specified by chunk_size. The chunks are

statically assigned to threads in the team in a round-robin fashion in the

order of the thread number. When no chunk_size is specified, the iteration

space is divided into chunks that are approximately equal in size, with one

chunk assigned to each thread.

dynamic When schedule(dynamic, chunk_size) is specified, the iterations are

divided into a series of chunks, each containing chunk_size iterations. Each

chunk is assigned to a thread that is waiting for an assignment. The thread

executes the chunk of iterations and then waits for its next assignment, until

no chunks remain to be assigned. Note that the last chunk to be assigned

may have a smaller number of iterations. When no chunk_size is specified, it

defaults to 1.

guided When schedule(guided, chunk_size) is specified, the iterations are

assigned to threads in chunks with decreasing sizes. When a thread finishes

its assigned chunk of iterations, it is dynamically assigned another chunk,

until none remain. For a chunk_size of 1, the size of each chunk is

approximately the number of unassigned iterations divided by the number

of threads. These sizes decrease approximately exponentially to 1. For a

chunk_size with value k greater than 1, the sizes decrease approximately

exponentially to k, except that the last chunk may have fewer than k
iterations. When no chunk_size is specified, it defaults to 1.

runtime When schedule(runtime) is specified, the decision regarding

scheduling is deferred until runtime. The schedule kind and size of the

chunks can be chosen at run time by setting the environment variable

OMP_SCHEDULE. If this environment variable is not set, the resulting

schedule is implementation-defined. When schedule(runtime) is

specified, chunk_size must not be specified.
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Restrictions to the for directive are as follows:

■ The for loop must be a structured block, and, in addition, its execution must not

be terminated by a break statement.

■ The values of the loop control expressions of the for loop associated with a for
directive must be the same for all the threads in the team.

■ The for loop iteration variable must have a signed integer type.

■ Only a single schedule clause can appear on a for directive.

■ Only a single ordered clause can appear on a for directive.

■ Only a single nowait clause can appear on a for directive.

■ It is unspecified if or how often any side effects within the chunk_size, lb, b, or incr
expressions occur.

■ The value of the chunk_size expression must be the same for all threads in the

team.

Cross References:
■ private , firstprivate , lastprivate , and reduction clauses, see

Section 2.7.2 on page 25.

■ OMP_SCHEDULEenvironment variable, see Section 4.1 on page 48.

■ ordered construct, see Section 2.6.6 on page 22.

■ Appendix D, page 93, gives more information on using the schedule clause.

2.4.2 sections Construct
The sections directive identifies a noniterative work-sharing construct that

specifies a set of constructs that are to be divided among threads in a team. Each

section is executed once by a thread in the team. The syntax of the sections
directive is as follows:

#pragma omp sections [clause[[, ] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block ]
...
}
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Chapter 2 Directives 15

The clause is one of the following:

Each section is preceded by a section directive, although the section directive is

optional for the first section. The section directives must appear within the lexical

extent of the sections directive. There is an implicit barrier at the end of a

sections construct, unless a nowait is specified.

Restrictions to the sections directive are as follows:

■ A section directive must not appear outside the lexical extent of the sections
directive.

■ Only a single nowait clause can appear on a sections directive.

Cross References:
■ private , firstprivate , lastprivate , and reduction clauses, see

Section 2.7.2 on page 25.

2.4.3 single Construct
The single directive identifies a construct that specifies that the associated

structured block is executed by only one thread in the team (not necessarily the

master thread). The syntax of the single directive is as follows:

The clause is one of the following:

private( variable-list)

firstprivate( variable-list)

lastprivate( variable-list)

reduction( operator: variable-list)

nowait

#pragma omp single [clause[[, ] clause] ...] new-line
structured-block

private( variable-list)

firstprivate( variable-list)

copyprivate( variable-list)

nowait
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There is an implicit barrier after the single construct unless a nowait clause is

specified.

Restrictions to the single directive are as follows:

■ Only a single nowait clause can appear on a single directive.

■ The copyprivate clause must not be used with the nowait clause.

Cross References:
■ private , firstprivate , and copyprivate clauses, see Section 2.7.2 on

page 25.

2.5 Combined Parallel Work-sharing
Constructs
Combined parallel work–sharing constructs are shortcuts for specifying a parallel

region that contains only one work-sharing construct. The semantics of these

directives are identical to that of explicitly specifying a parallel directive

followed by a single work-sharing construct.

The following sections describe the combined parallel work-sharing constructs:

■ the parallel for directive.

■ the parallel sections directive.

2.5.1 parallel for Construct
The parallel for directive is a shortcut for a parallel region that contains

only a single for directive. The syntax of the parallel for directive is as

follows:

This directive allows all the clauses of the parallel directive and the for
directive, except the nowait clause, with identical meanings and restrictions. The

semantics are identical to explicitly specifying a parallel directive immediately

followed by a for directive.

#pragma omp parallel for [clause[[, ] clause] ...] new-line
for-loop
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Cross References:
■ parallel directive, see Section 2.3 on page 8.

■ for directive, see Section 2.4.1 on page 11.

■ Data attribute clauses, see Section 2.7.2 on page 25.

2.5.2 parallel sections Construct
The parallel sections directive provides a shortcut form for specifying a

parallel region containing only a single sections directive. The semantics are

identical to explicitly specifying a parallel directive immediately followed by a

sections directive. The syntax of the parallel sections directive is as

follows:

The clause can be one of the clauses accepted by the parallel and sections
directives, except the nowait clause.

Cross References:
■ parallel directive, see Section 2.3 on page 8.

■ sections directive, see Section 2.4.2 on page 14.

2.6 Master and Synchronization Directives
The following sections describe :

■ the master construct.

■ the critical construct.

■ the barrier directive.

■ the atomic construct.

■ the flush directive.

■ the ordered construct.

#pragma omp parallel sections [clause[[, ] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block ]
...
}

1

2
3
4

5

6
7
8
9
10

11
12
13
14
15
16
17
18

19
20

21

22
23

24

25

26

27

28

29

30

31

32



18 OpenMP C/C++ • Version 2.0  March 2002

2.6.1 master Construct
The master directive identifies a construct that specifies a structured block that is

executed by the master thread of the team. The syntax of the master directive is as

follows:

Other threads in the team do not execute the associated structured block. There is no

implied barrier either on entry to or exit from the master construct.

2.6.2 critical Construct
The critical directive identifies a construct that restricts execution of the

associated structured block to a single thread at a time. The syntax of the critical
directive is as follows:

An optional name may be used to identify the critical region. Identifiers used to

identify a critical region have external linkage and are in a name space which is

separate from the name spaces used by labels, tags, members, and ordinary

identifiers.

A thread waits at the beginning of a critical region until no other thread is executing

a critical region (anywhere in the program) with the same name. All unnamed

critical directives map to the same unspecified name.

2.6.3 barrier Directive
The barrier directive synchronizes all the threads in a team. When encountered,

each thread in the team waits until all of the others have reached this point. The

syntax of the barrier directive is as follows:

After all threads in the team have encountered the barrier, each thread in the team

begins executing the statements after the barrier directive in parallel.

#pragma omp master new-line
structured-block

#pragma omp critical [( name) ] new-line
structured-block

#pragma omp barrier new-line
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Chapter 2 Directives 19

Note that because the barrier directive does not have a C language statement as

part of its syntax, there are some restrictions on its placement within a program. See

Appendix C for the formal grammar. The example below illustrates these

restrictions.

2.6.4 atomic Construct
The atomic directive ensures that a specific memory location is updated atomically,

rather than exposing it to the possibility of multiple, simultaneous writing threads.

The syntax of the atomic directive is as follows:

The expression statement must have one of the following forms:

In the preceding expressions:

■ x is an lvalue expression with scalar type.

■ expr is an expression with scalar type, and it does not reference the object

designated by x.

/* ERROR - The barrier directive cannot be the immediate
 * substatement of an if statement

*/
if (x!=0)
         #pragma omp barrier
...

/* OK - The barrier directive is enclosed in a
* compound statement.

 */
if (x!=0) {
         #pragma omp barrier
}

#pragma omp atomic new-line
expression-stmt

x binop= expr

x++

++x

x--

-- x
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■ binop is not an overloaded operator and is one of +, *, -, /, &, ^, |,
<<, or >>.

Although it is implementation-defined whether an implementation replaces all

atomic directives with critical directives that have the same unique name, the

atomic directive permits better optimization. Often hardware instructions are

available that can perform the atomic update with the least overhead.

Only the load and store of the object designated by x are atomic; the evaluation of

expr is not atomic. To avoid race conditions, all updates of the location in parallel

should be protected with the atomic directive, except those that are known to be

free of race conditions.

Restrictions to the atomic directive are as follows:

■ All atomic references to the storage location x throughout the program are

required to have a compatible type.

Examples:

2.6.5 flush Directive
The flush directive, whether explicit or implied, specifies a “cross-thread”

sequence point at which the implementation is required to ensure that all threads in

a team have a consistent view of certain objects (specified below) in memory. This

means that previous evaluations of expressions that reference those objects are

complete and subsequent evaluations have not yet begun. For example, compilers

must restore the values of the objects from registers to memory, and hardware may

need to flush write buffers to memory and reload the values of the objects from

memory.

extern float a[], *p = a, b;
/* Protect against races among multiple updates. */
#pragma omp atomic
a[index[i]] += b;
/* Protect against races with updates through a. */
#pragma omp atomic
p[i] -= 1.0f;

extern union {int n; float x;} u;
/* ERROR - References through incompatible types. */
#pragma omp atomic
u.n++;
#pragma omp atomic
u.x -= 1.0f;
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The syntax of the flush directive is as follows:

If the objects that require synchronization can all be designated by variables, then

those variables can be specified in the optional variable-list. If a pointer is present in

the variable-list, the pointer itself is flushed, not the object the pointer refers to.

A flush directive without a variable-list synchronizes all shared objects except

inaccessible objects with automatic storage duration. (This is likely to have more

overhead than a flush with a variable-list.) A flush directive without a variable-list
is implied for the following directives:

■ barrier

■ At entry to and exit from critical

■ At entry to and exit from ordered

■ At entry to and exit from parallel

■ At exit from for

■ At exit from sections

■ At exit from single

■ At entry to and exit from parallel for

■ At entry to and exit from parallel sections

The directive is not implied if a nowait clause is present. It should be noted that the

flush directive is not implied for any of the following:

■ At entry to for

■ At entry to or exit from master

■ At entry to sections

■ At entry to single

A reference that accesses the value of an object with a volatile-qualified type behaves

as if there were a flush directive specifying that object at the previous sequence

point. A reference that modifies the value of an object with a volatile-qualified type

behaves as if there were a flush directive specifying that object at the subsequent

sequence point.

#pragma omp flush [( variable-list) ] new-line

1

2

3
4
5

6
7
8
9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25
26
27
28
29

30



22 OpenMP C/C++ • Version 2.0  March 2002

Note that because the flush directive does not have a C language statement as part

of its syntax, there are some restrictions on its placement within a program. See

Appendix C for the formal grammar. The example below illustrates these

restrictions.

Restrictions to the flush directive are as follows:

■ A variable specified in a flush directive must not have a reference type.

2.6.6 ordered Construct
The structured block following an ordered directive is executed in the order in

which iterations would be executed in a sequential loop. The syntax of the ordered
directive is as follows:

An ordered directive must be within the dynamic extent of a for or parallel
for construct. The for or parallel for directive to which the ordered
construct binds must have an ordered clause specified as described in Section 2.4.1

on page 11. In the execution of a for or parallel for construct with an

ordered clause, ordered constructs are executed strictly in the order in which

they would be executed in a sequential execution of the loop.

Restrictions to the ordered directive are as follows:

■ An iteration of a loop with a for construct must not execute the same ordered

directive more than once, and it must not execute more than one ordered
directive.

/* ERROR - The flush directive cannot be the immediate
* substatement of an if statement.
*/

if (x!=0)
         #pragma omp flush (x)
...

/* OK - The flush directive is enclosed in a
 * compound statement

*/
if (x!=0) {
         #pragma omp flush (x)
}

#pragma omp ordered new-line
structured-block
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2.7 Data Environment
This section presents a directive and several clauses for controlling the data

environment during the execution of parallel regions, as follows:

■ A threadprivate directive (see the following section) is provided to make file-

scope, namespace-scope, or static block-scope variables local to a thread.

■ Clauses that may be specified on the directives to control the sharing attributes of

variables for the duration of the parallel or work-sharing constructs are described

in Section 2.7.2 on page 25.

2.7.1 threadprivate Directive
The threadprivate directive makes the named file-scope, namespace-scope, or

static block-scope variables specified in the variable-list private to a thread. variable-list
is a comma-separated list of variables that do not have an incomplete type. The

syntax of the threadprivate directive is as follows:

Each copy of a threadprivate variable is initialized once, at an unspecified point

in the program prior to the first reference to that copy, and in the usual manner (i.e.,

as the master copy would be initialized in a serial execution of the program). Note

that if an object is referenced in an explicit initializer of a threadprivate variable,

and the value of the object is modified prior to the first reference to a copy of the

variable, then the behavior is unspecified.

As with any private variable, a thread must not reference another thread's copy of a

threadprivate object. During serial regions and master regions of the program,

references will be to the master thread's copy of the object.

After the first parallel region executes, the data in the threadprivate objects is

guaranteed to persist only if the dynamic threads mechanism has been disabled and

if the number of threads remains unchanged for all parallel regions.

The restrictions to the threadprivate directive are as follows:

■ A threadprivate directive for file-scope or namespace-scope variables must

appear outside any definition or declaration, and must lexically precede all

references to any of the variables in its list.

■ Each variable in the variable-list of a threadprivate directive at file or

namespace scope must refer to a variable declaration at file or namespace scope

that lexically precedes the directive.

#pragma omp threadprivate( variable-list)  new-line
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■ A threadprivate directive for static block-scope variables must appear in the

scope of the variable and not in a nested scope. The directive must lexically

precede all references to any of the variables in its list.

■ Each variable in the variable-list of a threadprivate directive in block scope

must refer to a variable declaration in the same scope that lexically precedes the

directive. The variable declaration must use the static storage-class specifier.

■ If a variable is specified in a threadprivate directive in one translation unit, it

must be specified in a threadprivate directive in every translation unit in

which it is declared.

■ A threadprivate variable must not appear in any clause except the copyin ,

copyprivate , schedule , num_threads , or the if clause.

■ The address of a threadprivate variable is not an address constant.

■ A threadprivate variable must not have an incomplete type or a reference

type.

■ A threadprivate variable with non-POD class type must have an accessible,

unambiguous copy constructor if it is declared with an explicit initializer.

The following example illustrates how modifying a variable that appears in an

initializer can cause unspecified behavior, and also how to avoid this problem by

using an auxiliary object and a copy-constructor.

Cross References:
■ Dynamic threads, see Section 3.1.7 on page 39.

■ OMP_DYNAMICenvironment variable, see Section 4.3 on page 49.

int x = 1;
T a(x);
const T b_aux(x); /* Capture value of x = 1 */
T b(b_aux);
#pragma omp threadprivate(a, b)

void f(int n) {
   x++;
   #pragma omp parallel for
   /* In each thread:
    * Object a is constructed from x (with value 1 or 2?)
    * Object b is copy-constructed from b_aux
    */
   for (int i=0; i<n; i++) {
       g(a, b); /* Value of a is unspecified. */
   }
}
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2.7.2 Data-Sharing Attribute Clauses
Several directives accept clauses that allow a user to control the sharing attributes of

variables for the duration of the region. Sharing attribute clauses apply only to

variables in the lexical extent of the directive on which the clause appears. Not all of

the following clauses are allowed on all directives. The list of clauses that are valid

on a particular directive are described with the directive.

If a variable is visible when a parallel or work-sharing construct is encountered, and

the variable is not specified in a sharing attribute clause or threadprivate
directive, then the variable is shared. Static variables declared within the dynamic

extent of a parallel region are shared. Heap allocated memory (for example, using

malloc() in C or C++ or the new operator in C++) is shared. (The pointer to this

memory, however, can be either private or shared.) Variables with automatic storage

duration declared within the dynamic extent of a parallel region are private.

Most of the clauses accept a variable-list argument, which is a comma-separated list of

variables that are visible. If a variable referenced in a data-sharing attribute clause

has a type derived from a template, and there are no other references to that variable

in the program, the behavior is undefined.

All variables that appear within directive clauses must be visible. Clauses may be

repeated as needed, but no variable may be specified in more than one clause, except

that a variable can be specified in both a firstprivate and a lastprivate
clause.

The following sections describe the data-sharing attribute clauses:

■ private , Section 2.7.2.1 on page 25.

■ firstprivate , Section 2.7.2.2 on page 26.

■ lastprivate , Section 2.7.2.3 on page 27.

■ shared , Section 2.7.2.4 on page 27.

■ default , Section 2.7.2.5 on page 28.

■ reduction , Section 2.7.2.6 on page 28.

■ copyin , Section 2.7.2.7 on page 31.

■ copyprivate , Section 2.7.2.8 on page 32.

2.7.2.1 private

The private clause declares the variables in variable-list to be private to each thread

in a team. The syntax of the private clause is as follows:

private( variable-list)
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The behavior of a variable specified in a private clause is as follows. A new object

with automatic storage duration is allocated for the construct. The size and

alignment of the new object are determined by the type of the variable. This

allocation occurs once for each thread in the team, and a default constructor is

invoked for a class object if necessary; otherwise the initial value is indeterminate.

The original object referenced by the variable has an indeterminate value upon entry

to the construct, must not be modified within the dynamic extent of the construct,

and has an indeterminate value upon exit from the construct.

In the lexical extent of the directive construct, the variable references the new private

object allocated by the thread.

The restrictions to the private clause are as follows:

■ A variable with a class type that is specified in a private clause must have an

accessible, unambiguous default constructor.

■ A variable specified in a private clause must not have a const -qualified type

unless it has a class type with a mutable member.

■ A variable specified in a private clause must not have an incomplete type or a

reference type.

■ Variables that appear in the reduction clause of a parallel directive cannot

be specified in a private clause on a work-sharing directive that binds to the

parallel construct.

2.7.2.2 firstprivate

The firstprivate clause provides a superset of the functionality provided by the

private clause. The syntax of the firstprivate clause is as follows:

Variables specified in variable-list have private clause semantics, as described in

Section 2.7.2.1 on page 25. The initialization or construction happens as if it were

done once per thread, prior to the thread’s execution of the construct. For a

firstprivate clause on a parallel construct, the initial value of the new private

object is the value of the original object that exists immediately prior to the parallel

construct for the thread that encounters it. For a firstprivate clause on a work-

sharing construct, the initial value of the new private object for each thread that

executes the work-sharing construct is the value of the original object that exists

prior to the point in time that the same thread encounters the work-sharing

construct. In addition, for C++ objects, the new private object for each thread is copy

constructed from the original object.

The restrictions to the firstprivate clause are as follows:

■ A variable specified in a firstprivate clause must not have an incomplete

type or a reference type.

firstprivate( variable-list)

1
2
3
4
5
6
7
8

9
10

11

12
13

14
15

16
17

18
19
20

21

22
23

24

25
26
27
28
29
30
31
32
33
34
35

36

37
38

39



Chapter 2 Directives 27

■ A variable with a class type that is specified as firstprivate must have an

accessible, unambiguous copy constructor.

■ Variables that are private within a parallel region or that appear in the

reduction clause of a parallel directive cannot be specified in a

firstprivate clause on a work-sharing directive that binds to the parallel

construct.

2.7.2.3 lastprivate

The lastprivate clause provides a superset of the functionality provided by the

private clause. The syntax of the lastprivate clause is as follows:

Variables specified in the variable-list have private clause semantics. When a

lastprivate clause appears on the directive that identifies a work-sharing

construct, the value of each lastprivate variable from the sequentially last

iteration of the associated loop, or the lexically last section directive, is assigned to

the variable's original object. Variables that are not assigned a value by the last

iteration of the for or parallel for , or by the lexically last section of the

sections or parallel sections directive, have indeterminate values after the

construct. Unassigned subobjects also have an indeterminate value after the

construct.

The restrictions to the lastprivate clause are as follows:

■ All restrictions for private apply.

■ A variable with a class type that is specified as lastprivate must have an

accessible, unambiguous copy assignment operator.

■ Variables that are private within a parallel region or that appear in the

reduction clause of a parallel directive cannot be specified in a

lastprivate clause on a work-sharing directive that binds to the parallel

construct.

2.7.2.4 shared

This clause shares variables that appear in the variable-list among all the threads in a

team. All threads within a team access the same storage area for shared variables.

The syntax of the shared clause is as follows:

lastprivate( variable-list)

shared( variable-list)
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2.7.2.5 default

The default clause allows the user to affect the data-sharing attributes of

variables. The syntax of the default clause is as follows:

Specifying default(shared) is equivalent to explicitly listing each currently

visible variable in a shared clause, unless it is threadprivate or const -

qualified. In the absence of an explicit default clause, the default behavior is the

same as if default(shared) were specified.

Specifying default(none) requires that at least one of the following must be true

for every reference to a variable in the lexical extent of the parallel construct:

■ The variable is explicitly listed in a data-sharing attribute clause of a construct

that contains the reference.

■ The variable is declared within the parallel construct.

■ The variable is threadprivate .

■ The variable has a const -qualified type.

■ The variable is the loop control variable for a for loop that immediately

follows a for or parallel for directive, and the variable reference appears

inside the loop.

Specifying a variable on a firstprivate , lastprivate , or reduction clause

of an enclosed directive causes an implicit reference to the variable in the enclosing

context. Such implicit references are also subject to the requirements listed above.

Only a single default clause may be specified on a parallel directive.

A variable’s default data-sharing attribute can be overridden by using the private ,

firstprivate , lastprivate , reduction , and shared clauses, as

demonstrated by the following example:

2.7.2.6 reduction

This clause performs a reduction on the scalar variables that appear in variable-list,
with the operator op. The syntax of the reduction clause is as follows:

default(shared | none)

#pragma omp parallel for default(shared) firstprivate(i)\
private(x) private(r) lastprivate(i)

reduction( op: variable-list)
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A reduction is typically specified for a statement with one of the following forms:

where:

The following is an example of the reduction clause:

As shown in the example, an operator may be hidden inside a function call. The user

should be careful that the operator specified in the reduction clause matches the

reduction operation.

Although the right operand of the || operator has no side effects in this example,

they are permitted, but should be used with care. In this context, a side effect that is

guaranteed not to occur during sequential execution of the loop may occur during

parallel execution. This difference can occur because the order of execution of the

iterations is indeterminate.

x = x op expr
x binop= expr
x = expr op x (except for subtraction)
x++
++x
x--
-- x

x One of the reduction variables specified in

the list.

variable-list A comma-separated list of scalar reduction

variables.

expr An expression with scalar type that does

not reference x.

op Not an overloaded operator but one of +,
*, -, &, ^, |, &&, or || .

binop Not an overloaded operator but one of +,
*, -, &, ^, or | .

#pragma omp parallel for reduction(+: a, y) reduction(||: am)
for (i=0; i<n; i++) {
    a += b[i];
    y = sum(y, c[i]);
    am = am || b[i] == c[i];
}
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The operator is used to determine the initial value of any private variables used by

the compiler for the reduction and to determine the finalization operator. Specifying

the operator explicitly allows the reduction statement to be outside the lexical extent

of the construct. Any number of reduction clauses may be specified on the

directive, but a variable may appear in at most one reduction clause for that

directive.

A private copy of each variable in variable-list is created, one for each thread, as if the

private clause had been used. The private copy is initialized according to the

operator (see the following table).

At the end of the region for which the reduction clause was specified, the original

object is updated to reflect the result of combining its original value with the final

value of each of the private copies using the operator specified. The reduction

operators are all associative (except for subtraction), and the compiler may freely

reassociate the computation of the final value. (The partial results of a subtraction

reduction are added to form the final value.)

The value of the original object becomes indeterminate when the first thread reaches

the containing clause and remains so until the reduction computation is complete.

Normally, the computation will be complete at the end of the construct; however, if

the reduction clause is used on a construct to which nowait is also applied, the

value of the original object remains indeterminate until a barrier synchronization has

been performed to ensure that all threads have completed the reduction clause.

The following table lists the operators that are valid and their canonical initialization

values. The actual initialization value will be consistent with the data type of the

reduction variable.

The restrictions to the reduction clause are as follows:

■ The type of the variables in the reduction clause must be valid for the

reduction operator except that pointer types and reference types are never

permitted.

Operator Initialization

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0
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■ A variable that is specified in the reduction clause must not be const -

qualified.

■ Variables that are private within a parallel region or that appear in the

reduction clause of a parallel directive cannot be specified in a

reduction clause on a work-sharing directive that binds to the parallel

construct.

2.7.2.7 copyin

The copyin clause provides a mechanism to assign the same value to

threadprivate variables for each thread in the team executing the parallel

region. For each variable specified in a copyin clause, the value of the variable in

the master thread of the team is copied, as if by assignment, to the thread-private

copies at the beginning of the parallel region. The syntax of the copyin clause is as

follows:

The restrictions to the copyin clause are as follows:

■ A variable that is specified in the copyin clause must have an accessible,

unambiguous copy assignment operator.

■ A variable that is specified in the copyin clause must be a threadprivate
variable.

#pragma omp parallel private(y)
{ /* ERROR - private variable y cannot be specified
             in a reduction clause */
  #pragma omp for reduction(+: y)
  for (i=0; i<n; i++)
    y += b[i];
}

/* ERROR - variable x cannot be specified in both
           a shared and a reduction clause */
#pragma omp parallel for shared(x) reduction(+: x)

copyin( variable-list)
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2.7.2.8 copyprivate

The copyprivate clause provides a mechanism to use a private variable to

broadcast a value from one member of a team to the other members. It is an

alternative to using a shared variable for the value when providing such a shared

variable would be difficult (for example, in a recursion requiring a different variable

at each level). The copyprivate clause can only appear on the single directive.

The syntax of the copyprivate clause is as follows:

The effect of the copyprivate clause on the variables in its variable-list occurs after

the execution of the structured block associated with the single construct, and

before any of the threads in the team have left the barrier at the end of the construct.

Then, in all other threads in the team, for each variable in the variable-list, that

variable becomes defined (as if by assignment) with the value of the corresponding

variable in the thread that executed the construct's structured block.

Restrictions to the copyprivate clause are as follows:

■ A variable that is specified in the copyprivate clause must not appear in a

private or firstprivate clause for the same single directive.

■ If a single directive with a copyprivate clause is encountered in the

dynamic extent of a parallel region, all variables specified in the copyprivate
clause must be private in the enclosing context.

■ A variable that is specified in the copyprivate clause must have an accessible

unambiguous copy assignment operator.

2.8 Directive Binding
Dynamic binding of directives must adhere to the following rules:

■ The for , sections , single , master , and barrier directives bind to the

dynamically enclosing parallel , if one exists, regardless of the value of any if
clause that may be present on that directive. If no parallel region is currently

being executed, the directives are executed by a team composed of only the

master thread.

■ The ordered directive binds to the dynamically enclosing for .

■ The atomic directive enforces exclusive access with respect to atomic
directives in all threads, not just the current team.

■ The critical directive enforces exclusive access with respect to critical
directives in all threads, not just the current team.

copyprivate( variable-list)
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■ A directive can never bind to any directive outside the closest dynamically

enclosing parallel .

2.9 Directive Nesting
Dynamic nesting of directives must adhere to the following rules:

■ A parallel directive dynamically inside another parallel logically

establishes a new team, which is composed of only the current thread, unless

nested parallelism is enabled.

■ for , sections , and single directives that bind to the same parallel are not

allowed to be nested inside each other.

■ critical directives with the same name are not allowed to be nested inside each

other. Note this restriction is not sufficient to prevent deadlock.

■ for , sections , and single directives are not permitted in the dynamic extent

of critical , ordered , and master regions if the directives bind to the same

parallel as the regions.

■ barrier directives are not permitted in the dynamic extent of for , ordered ,

sections , single , master , and critical regions if the directives bind to

the same parallel as the regions.

■ master directives are not permitted in the dynamic extent of for , sections ,

and single directives if the master directives bind to the same parallel as

the work-sharing directives.

■ ordered directives are not allowed in the dynamic extent of critical regions

if the directives bind to the same parallel as the regions.

■ Any directive that is permitted when executed dynamically inside a parallel

region is also permitted when executed outside a parallel region. When executed

dynamically outside a user-specified parallel region, the directive is executed by a

team composed of only the master thread.
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CHAPTER 3

Run-time Library Functions

This section describes the OpenMP C and C++ run-time library functions. The

header <omp.h> declares two types, several functions that can be used to control

and query the parallel execution environment, and lock functions that can be used to

synchronize access to data.

The type omp_lock_t is an object type capable of representing that a lock is

available, or that a thread owns a lock. These locks are referred to as simple locks.

The type omp_nest_lock_t is an object type capable of representing either that a

lock is available, or both the identity of the thread that owns the lock and a nesting
count (described below). These locks are referred to as nestable locks.

The library functions are external functions with “C” linkage.

The descriptions in this chapter are divided into the following topics:

■ Execution environment functions (see Section 3.1 on page 35).

■ Lock functions (see Section 3.2 on page 41).

3.1 Execution Environment Functions
The functions described in this section affect and monitor threads, processors, and

the parallel environment:

■ the omp_set_num_threads function.

■ the omp_get_num_threads function.

■ the omp_get_max_threads function.

■ the omp_get_thread_num function.

■ the omp_get_num_procs function.

■ the omp_in_parallel function.
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■ the omp_set_dynamic function.

■ the omp_get_dynamic function.

■ the omp_set_nested function.

■ the omp_get_nested function.

3.1.1 omp_set_num_threads Function
The omp_set_num_threads function sets the default number of threads to use

for subsequent parallel regions that do not specify a num_threads clause. The

format is as follows:

The value of the parameter num_threads must be a positive integer. Its effect depends

upon whether dynamic adjustment of the number of threads is enabled. For a

comprehensive set of rules about the interaction between the

omp_set_num_threads function and dynamic adjustment of threads, see

Section 2.3 on page 8.

This function has the effects described above when called from a portion of the

program where the omp_in_parallel function returns zero. If it is called from a

portion of the program where the omp_in_parallel function returns a nonzero

value, the behavior of this function is undefined.

This call has precedence over the OMP_NUM_THREADSenvironment variable. The

default value for the number of threads, which may be established by calling

omp_set_num_threads or by setting the OMP_NUM_THREADSenvironment

variable, can be explicitly overridden on a single parallel directive by specifying

the num_threads clause.

Cross References:
■ omp_set_dynamic function, see Section 3.1.7 on page 39.

■ omp_get_dynamic function, see Section 3.1.8 on page 40.

■ OMP_NUM_THREADSenvironment variable, see Section 4.2 on page 48, and

Section 2.3 on page 8.

■ num_threads clause, see Section 2.3 on page 8

#include <omp.h>
void omp_set_num_threads(int num_threads);
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3.1.2 omp_get_num_threads Function
The omp_get_num_threads function returns the number of threads currently in

the team executing the parallel region from which it is called. The format is as

follows:

The num_threads clause, the omp_set_num_threads function, and the

OMP_NUM_THREADSenvironment variable control the number of threads in a team.

If the number of threads has not been explicitly set by the user, the default is

implementation-defined. This function binds to the closest enclosing parallel
directive. If called from a serial portion of a program, or from a nested parallel

region that is serialized, this function returns 1.

Cross References:
■ OMP_NUM_THREADSenvironment variable, see Section 4.2 on page 48.

■ num_threads clause, see Section 2.3 on page 8.

■ parallel construct, see Section 2.3 on page 8.

3.1.3 omp_get_max_threads Function
The omp_get_max_threads function returns an integer that is guaranteed to be

at least as large as the number of threads that would be used to form a team if a

parallel region without a num_threads clause were to be encountered at that point

in the code. The format is as follows:

The following expresses a lower bound on the value of omp_get_max_threads :

threads-used-for-next-team <= omp_get_max_threads

Note that if a subsequent parallel region uses the num_threads clause to request a

specific number of threads, the guarantee on the lower bound of the result of

omp_get_max_threads no long holds.

The omp_get_max_threads function’s return value can be used to dynamically

allocate sufficient storage for all threads in the team formed at the subsequent

parallel region.

#include <omp.h>
int omp_get_num_threads(void);

#include <omp.h>
int omp_get_max_threads(void);
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Cross References:
■ omp_get_num_threads function, see Section 3.1.2 on page 37.

■ omp_set_num_threads function, see Section 3.1.1 on page 36.

■ omp_set_dynamic function, see Section 3.1.7 on page 39.

■ num_threads clause, see Section 2.3 on page 8.

3.1.4 omp_get_thread_num Function
The omp_get_thread_num function returns the thread number, within its team,

of the thread executing the function. The thread number lies between 0 and

omp_get_num_threads() –1, inclusive. The master thread of the team is thread 0.

The format is as follows:

If called from a serial region, omp_get_thread_num returns 0. If called from

within a nested parallel region that is serialized, this function returns 0.

Cross References:
■ omp_get_num_threads function, see Section 3.1.2 on page 37.

3.1.5 omp_get_num_procs Function
The omp_get_num_procs function returns the number of processors that are

available to the program at the time the function is called. The format is as follows:

3.1.6 omp_in_parallel Function
The omp_in_parallel function returns a nonzero value if it is called within the

dynamic extent of a parallel region executing in parallel; otherwise, it returns 0. The

format is as follows:

#include <omp.h>
int omp_get_thread_num(void);

#include <omp.h>
int omp_get_num_procs(void);

#include <omp.h>
int omp_in_parallel(void);
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This function returns a nonzero value when called from within a region executing in

parallel, including nested regions that are serialized.

3.1.7 omp_set_dynamic Function
The omp_set_dynamic function enables or disables dynamic adjustment of the

number of threads available for execution of parallel regions. The format is as

follows:

If dynamic_threads evaluates to a nonzero value, the number of threads that are used

for executing subsequent parallel regions may be adjusted automatically by the run-

time environment to best utilize system resources. As a consequence, the number of

threads specified by the user is the maximum thread count. The number of threads

in the team executing a parallel region remains fixed for the duration of that parallel

region and is reported by the omp_get_num_threads function.

If dynamic_threads evaluates to 0, dynamic adjustment is disabled.

This function has the effects described above when called from a portion of the

program where the omp_in_parallel function returns zero. If it is called from a

portion of the program where the omp_in_parallel function returns a nonzero

value, the behavior of this function is undefined.

A call to omp_set_dynamic has precedence over the OMP_DYNAMICenvironment

variable.

The default for the dynamic adjustment of threads is implementation-defined. As a

result, user codes that depend on a specific number of threads for correct execution

should explicitly disable dynamic threads. Implementations are not required to

provide the ability to dynamically adjust the number of threads, but they are

required to provide the interface in order to support portability across all platforms.

Cross References:
■ omp_get_num_threads function, see Section 3.1.2 on page 37.

■ OMP_DYNAMICenvironment variable, see Section 4.3 on page 49.

■ omp_in_parallel function, see Section 3.1.6 on page 38.

#include <omp.h>
void omp_set_dynamic(int dynamic_threads);
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3.1.8 omp_get_dynamic Function
The omp_get_dynamic function returns a nonzero value if dynamic adjustment of

threads is enabled, and returns 0 otherwise. The format is as follows:

If the implementation does not implement dynamic adjustment of the number of

threads, this function always returns 0.

Cross References:
■ For a description of dynamic thread adjustment, see Section 3.1.7 on page 39.

3.1.9 omp_set_nested Function
The omp_set_nested function enables or disables nested parallelism. The format

is as follows:

If nested evaluates to 0, nested parallelism is disabled, which is the default, and

nested parallel regions are serialized and executed by the current thread. If nested
evaluates to a nonzero value, nested parallelism is enabled, and parallel regions that

are nested may deploy additional threads to form nested teams.

This function has the effects described above when called from a portion of the

program where the omp_in_parallel function returns zero. If it is called from a

portion of the program where the omp_in_parallel function returns a nonzero

value, the behavior of this function is undefined.

This call has precedence over the OMP_NESTEDenvironment variable.

When nested parallelism is enabled, the number of threads used to execute nested

parallel regions is implementation-defined. As a result, OpenMP-compliant

implementations are allowed to serialize nested parallel regions even when nested

parallelism is enabled.

Cross References:
■ OMP_NESTEDenvironment variable, see Section 4.4 on page 49.

■ omp_in_parallel function, see Section 3.1.6 on page 38.

#include <omp.h>
int omp_get_dynamic(void);

#include <omp.h>
void omp_set_nested(int nested);
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3.1.10 omp_get_nested Function
The omp_get_nested function returns a nonzero value if nested parallelism is

enabled and 0 if it is disabled. For more information on nested parallelism, see

Section 3.1.9 on page 40. The format is as follows:

If an implementation does not implement nested parallelism, this function always

returns 0.

3.2 Lock Functions
The functions described in this section manipulate locks used for synchronization.

For the following functions, the lock variable must have type omp_lock_t . This

variable must only be accessed through these functions. All lock functions require an

argument that has a pointer to omp_lock_t type.

■ The omp_init_lock function initializes a simple lock.

■ The omp_destroy_lock function removes a simple lock.

■ The omp_set_lock function waits until a simple lock is available.

■ The omp_unset_lock function releases a simple lock.

■ The omp_test_lock function tests a simple lock.

For the following functions, the lock variable must have type omp_nest_lock_t .

This variable must only be accessed through these functions. All nestable lock

functions require an argument that has a pointer to omp_nest_lock_t type.

■ The omp_init_nest_lock function initializes a nestable lock.

■ The omp_destroy_nest_lock function removes a nestable lock.

■ The omp_set_nest_lock function waits until a nestable lock is available.

■ The omp_unset_nest_lock function releases a nestable lock.

■ The omp_test_nest_lock function tests a nestable lock.

The OpenMP lock functions access the lock variable in such a way that they always

read and update the most current value of the lock variable. Therefore, it is not

necessary for an OpenMP program to include explicit flush directives to ensure

that the lock variable’s value is consistent among different threads. (There may be a

need for flush directives to make the values of other variables consistent.)

#include <omp.h>
int omp_get_nested(void);
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3.2.1 omp_init_lock and omp_init_nest_lock
Functions
These functions provide the only means of initializing a lock. Each function

initializes the lock associated with the parameter lock for use in subsequent calls. The

format is as follows:

The initial state is unlocked (that is, no thread owns the lock). For a nestable lock,

the initial nesting count is zero. It is noncompliant to call either of these routines

with a lock variable that has already been initialized.

3.2.2 omp_destroy_lock and
omp_destroy_nest_lock Functions
These functions ensure that the pointed to lock variable lock is uninitialized. The

format is as follows:

It is noncompliant to call either of these routines with a lock variable that is

uninitialized or unlocked.

3.2.3 omp_set_lock and omp_set_nest_lock
Functions
Each of these functions blocks the thread executing the function until the specified

lock is available and then sets the lock. A simple lock is available if it is unlocked. A

nestable lock is available if it is unlocked or if it is already owned by the thread

executing the function. The format is as follows:

#include <omp.h>
void omp_init_lock(omp_lock_t * lock);
void omp_init_nest_lock(omp_nest_lock_t * lock);

#include <omp.h>
void omp_destroy_lock(omp_lock_t * lock);
void omp_destroy_nest_lock(omp_nest_lock_t * lock);

#include <omp.h>
void omp_set_lock(omp_lock_t * lock);
void omp_set_nest_lock(omp_nest_lock_t * lock);
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For a simple lock, the argument to the omp_set_lock function must point to an

initialized lock variable. Ownership of the lock is granted to the thread executing the

function.

For a nestable lock, the argument to the omp_set_nest_lock function must point

to an initialized lock variable. The nesting count is incremented, and the thread is

granted, or retains, ownership of the lock.

3.2.4 omp_unset_lock and omp_unset_nest_lock
Functions
These functions provide the means of releasing ownership of a lock. The format is as

follows:

The argument to each of these functions must point to an initialized lock variable

owned by the thread executing the function. The behavior is undefined if the thread

does not own that lock.

For a simple lock, the omp_unset_lock function releases the thread executing the

function from ownership of the lock.

For a nestable lock, the omp_unset_nest_lock function decrements the nesting

count, and releases the thread executing the function from ownership of the lock if

the resulting count is zero.

3.2.5 omp_test_lock and omp_test_nest_lock
Functions
These functions attempt to set a lock but do not block execution of the thread. The

format is as follows:

The argument must point to an initialized lock variable. These functions attempt to

set a lock in the same manner as omp_set_lock and omp_set_nest_lock ,

except that they do not block execution of the thread.

#include <omp.h>
void omp_unset_lock(omp_lock_t * lock);
void omp_unset_nest_lock(omp_nest_lock_t * lock);

#include <omp.h>
int omp_test_lock(omp_lock_t * lock);
int omp_test_nest_lock(omp_nest_lock_t * lock);
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For a simple lock, the omp_test_lock function returns a nonzero value if the lock

is successfully set; otherwise, it returns zero.

For a nestable lock, the omp_test_nest_lock function returns the new nesting

count if the lock is successfully set; otherwise, it returns zero.

3.3 Timing Routines
The functions described in this section support a portable wall-clock timer:

■ The omp_get_wtime function returns elapsed wall-clock time.

■ The omp_get_wtick function returns seconds between successive clock ticks.

3.3.1 omp_get_wtime Function
The omp_get_wtime function returns a double-precision floating point value

equal to the elapsed wall clock time in seconds since some “time in the past”. The

actual “time in the past” is arbitrary, but it is guaranteed not to change during the

execution of the application program. The format is as follows:

It is anticipated that the function will be used to measure elapsed times as shown in

the following example:

The times returned are “per-thread times” by which is meant they are not required

to be globally consistent across all the threads participating in an application.

#include <omp.h>
double omp_get_wtime(void);

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf(“Work took %f sec. time.\n”, end-start);
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3.3.2 omp_get_wtick Function
The omp_get_wtick function returns a double-precision floating point value

equal to the number of seconds between successive clock ticks. The format is as

follows:

#include <omp.h>
double omp_get_wtick(void);

1

2
3
4

5
6

7



46 OpenMP C/C++ • Version 2.0  March 20021



47

CHAPTER 4

Environment Variables

This chapter describes the OpenMP C and C++ API environment variables (or

equivalent platform-specific mechanisms) that control the execution of parallel code.

The names of environment variables must be uppercase. The values assigned to

them are case insensitive and may have leading and trailing white space.

Modifications to the values after the program has started are ignored.

The environment variables are as follows:

■ OMP_SCHEDULEsets the run-time schedule type and chunk size.

■ OMP_NUM_THREADSsets the number of threads to use during execution.

■ OMP_DYNAMICenables or disables dynamic adjustment of the number of threads.

■ OMP_NESTEDenables or disables nested parallelism.

The examples in this chapter only demonstrate how these variables might be set in

Unix C shell (csh) environments. In Korn shell and DOS environments the actions

are similar, as follows:

■ csh:

■ ksh:

■ DOS:

setenv OMP_SCHEDULE “dynamic”

export OMP_SCHEDULE=”dynamic”

set OMP_SCHEDULE=”dynamic”
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4.1 OMP_SCHEDULE
OMP_SCHEDULEapplies only to for and parallel for directives that have the

schedule type runtime . The schedule type and chunk size for all such loops can be

set at run time by setting this environment variable to any of the recognized

schedule types and to an optional chunk_size.

For for and parallel for directives that have a schedule type other than

runtime , OMP_SCHEDULEis ignored. The default value for this environment

variable is implementation-defined. If the optional chunk_size is set, the value must

be positive. If chunk_size is not set, a value of 1 is assumed, except in the case of a

static schedule. For a static schedule, the default chunk size is set to the loop

iteration space divided by the number of threads applied to the loop.

Example:

Cross References:
■ for directive, see Section 2.4.1 on page 11.

■ parallel for directive, see Section 2.5.1 on page 16.

4.2 OMP_NUM_THREADS
The OMP_NUM_THREADSenvironment variable sets the default number of threads

to use during execution, unless that number is explicitly changed by calling the

omp_set_num_threads library routine or by an explicit num_threads clause on

a parallel directive.

The value of the OMP_NUM_THREADSenvironment variable must be a positive

integer. Its effect depends upon whether dynamic adjustment of the number of

threads is enabled. For a comprehensive set of rules about the interaction between

the OMP_NUM_THREADSenvironment variable and dynamic adjustment of threads,

see Section 2.3 on page 8.

If no value is specified for the OMP_NUM_THREADSenvironment variable, or if the

value specified is not a positive integer, or if the value is greater than the maximum

number of threads the system can support, the number of threads to use is

implementation-defined.

setenv OMP_SCHEDULE "guided,4"
setenv OMP_SCHEDULE "dynamic"
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Example:

Cross References:
■ num_threads clause, see Section 2.3 on page 8.

■ omp_set_num_threads function, see Section 3.1.1 on page 36.

■ omp_set_dynamic function, see Section 3.1.7 on page 39.

4.3 OMP_DYNAMIC
The OMP_DYNAMICenvironment variable enables or disables dynamic adjustment

of the number of threads available for execution of parallel regions unless dynamic

adjustment is explicitly enabled or disabled by calling the omp_set_dynamic
library routine. Its value must be TRUEor FALSE.

If set to TRUE, the number of threads that are used for executing parallel regions

may be adjusted by the runtime environment to best utilize system resources.

If set to FALSE, dynamic adjustment is disabled. The default condition is

implementation-defined.

Example:

Cross References:
■ For more information on parallel regions, see Section 2.3 on page 8.

■ omp_set_dynamic function, see Section 3.1.7 on page 39.

4.4 OMP_NESTED
The OMP_NESTEDenvironment variable enables or disables nested parallelism

unless nested parallelism is enabled or disabled by calling the omp_set_nested
library routine. If set to TRUE, nested parallelism is enabled; if it is set to FALSE,

nested parallelism is disabled. The default value is FALSE.

setenv OMP_NUM_THREADS 16

setenv OMP_DYNAMIC TRUE
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Example:

Cross Reference:
■ omp_set_nested function, see Section 3.1.9 on page 40.

setenv OMP_NESTED TRUE
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APPENDIX A

Examples

The following are examples of the constructs defined in this document. Note that a

statement following a directive is compound only when necessary, and a non-

compound statement is indented with respect to a directive preceding it.

A.1 Executing a Simple Loop in Parallel
The following example demonstrates how to parallelize a simple loop using the

parallel for directive (Section 2.5.1 on page 16). The loop iteration variable is

private by default, so it is not necessary to specify it explicitly in a private clause.

A.2 Specifying Conditional Compilation
The following examples illustrate the use of conditional compilation using the

OpenMP macro _OPENMP(Section 2.2 on page 8). With OpenMP compilation, the

_OPENMPmacro becomes defined.

#pragma omp parallel for
  for (i=1; i<n; i++)
    b[i] = (a[i] + a[i-1]) / 2.0;

# ifdef _OPENMP
  printf("Compiled by an OpenMP-compliant implementation.\n");
# endif
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The defined preprocessor operator allows more than one macro to be tested in a

single directive.

A.3 Using Parallel Regions
The parallel directive (Section 2.3 on page 8) can be used in coarse-grain parallel

programs. In the following example, each thread in the parallel region decides what

part of the global array x to work on, based on the thread number:

A.4 Using the nowait Clause
If there are multiple independent loops within a parallel region, you can use the

nowait clause (Section 2.4.1 on page 11) to avoid the implied barrier at the end of

the for directive, as follows:

# if defined(_OPENMP) && defined(VERBOSE)
  printf("Compiled by an OpenMP-compliant implementation.\n");
# endif

#pragma omp parallel shared(x, npoints) private(iam, np, ipoints)
{
  iam = omp_get_thread_num();
  np =  omp_get_num_threads();
  ipoints = npoints / np;
  subdomain(x, iam, ipoints);
}

#pragma omp parallel
{
  #pragma omp for nowait
    for (i=1; i<n; i++)
      b[i] = (a[i] + a[i-1]) / 2.0;
  #pragma omp for nowait
    for (i=0; i<m; i++)
      y[i] = sqrt(z[i]);
}
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A.5 Using the critical Directive
The following example includes several critical directives (Section 2.6.2 on page

18). The example illustrates a queuing model in which a task is dequeued and

worked on. To guard against multiple threads dequeuing the same task, the

dequeuing operation must be in a critical section. Because the two queues in

this example are independent, they are protected by critical directives with

different names, xaxis and yaxis.

A.6 Using the lastprivate Clause
Correct execution sometimes depends on the value that the last iteration of a loop

assigns to a variable. Such programs must list all such variables as arguments to a

lastprivate clause (Section 2.7.2.3 on page 27) so that the values of the variables

are the same as when the loop is executed sequentially.

In the preceding example, the value of i at the end of the parallel region will equal

n–1, as in the sequential case.

#pragma omp parallel shared(x, y) private(x_next, y_next)
{
  #pragma omp critical ( xaxis )
    x_next = dequeue(x);
  work(x_next);
  #pragma omp critical ( yaxis )
    y_next = dequeue(y);
  work(y_next);
}

#pragma omp parallel
{
  #pragma omp for lastprivate(i)
    for (i=0; i<n-1; i++)
      a[i] = b[i] + b[i+1];
}
a[i]=b[i];
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A.7 Using the reduction Clause
The following example demonstrates the reduction clause (Section 2.7.2.6 on page

28):

A.8 Specifying Parallel Sections
In the following example, (for Section 2.4.2 on page 14) functions xaxis, yaxis, and

zaxis can be executed concurrently. The first section directive is optional. Note

that all section directives need to appear in the lexical extent of the

parallel sections construct.

A.9 Using single Directives
The following example demonstrates the single directive (Section 2.4.3 on page

15). In the example, only one thread (usually the first thread that encounters the

single directive) prints the progress message. The user must not make any

assumptions as to which thread will execute the single section. All other threads

#pragma omp parallel for private(i) shared(x, y, n) \
reduction(+: a, b)

  for (i=0; i<n; i++) {
    a = a + x[i];
    b = b + y[i];

}

#pragma omp parallel sections
{
  #pragma omp section
    xaxis();
  #pragma omp section
    yaxis();
  #pragma omp section
    zaxis();
}
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will skip the single section and stop at the barrier at the end of the single
construct. If other threads can proceed without waiting for the thread executing the

single section, a nowait clause can be specified on the single directive.

A.10 Specifying Sequential Ordering
Ordered sections (Section 2.6.6 on page 22) are useful for sequentially ordering the

output from work that is done in parallel. The following program prints out the

indexes in sequential order:

A.11 Specifying a Fixed Number of Threads
Some programs rely on a fixed, prespecified number of threads to execute correctly.

Because the default setting for the dynamic adjustment of the number of threads is

implementation-defined, such programs can choose to turn off the dynamic threads

#pragma omp parallel
{
  #pragma omp single
    printf("Beginning work1.\n");
  work1();
  #pragma omp single
    printf("Finishing work1.\n");
  #pragma omp single nowait
    printf("Finished work1 and beginning work2.\n");
  work2();
}

#pragma omp for ordered schedule(dynamic)
  for (i=lb; i<ub; i+=st)
    work(i);

void work(int k)
{
  #pragma omp ordered
    printf(" %d", k);
}
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capability and set the number of threads explicitly to ensure portability. The

following example shows how to do this using omp_set_dynamic (Section 3.1.7

on page 39), and omp_set_num_threads (Section 3.1.1 on page 36):

In this example, the program executes correctly only if it is executed by 16 threads. If

the implementation is not capable of supporting 16 threads, the behavior of this

example is implementation-defined.

Note that the number of threads executing a parallel region remains constant during

a parallel region, regardless of the dynamic threads setting. The dynamic threads

mechanism determines the number of threads to use at the start of the parallel

region and keeps it constant for the duration of the region.

A.12 Using the atomic Directive
The following example avoids race conditions (simultaneous updates of an element

of x by multiple threads) by using the atomic directive (Section 2.6.4 on page 19):

The advantage of using the atomic directive in this example is that it allows

updates of two different elements of x to occur in parallel. If a critical directive

(Section 2.6.2 on page 18) were used instead, then all updates to elements of x would

be executed serially (though not in any guaranteed order).

Note that the atomic directive applies only to the C or C++ statement immediately

following it. As a result, elements of y are not updated atomically in this example.

omp_set_dynamic(0);
omp_set_num_threads(16);
#pragma omp parallel shared(x, npoints) private(iam, ipoints)
{
  if (omp_get_num_threads() != 16) abort();
  iam = omp_get_thread_num();
  ipoints = npoints/16;
  do_by_16(x, iam, ipoints);
}

#pragma omp parallel for shared(x, y, index, n)
  for (i=0; i<n; i++) {
    #pragma omp atomic
      x[index[i]] += work1(i);
    y[i] += work2(i);
  }
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A.13 Using the flush Directive with a List
The following example uses the flush directive for point-to-point synchronization

of specific objects between pairs of threads:

A.14 Using the flush Directive without a List
The following example (for Section 2.6.5 on page 20) distinguishes the shared objects

affected by a flush directive with no list from the shared objects that are not

affected:

int sync[NUMBER_OF_THREADS];
float work[NUMBER_OF_THREADS];
#pragma omp parallel private(iam,neighbor) shared(work,sync)
{

  iam = omp_get_thread_num();
  sync[iam] = 0;
  #pragma omp barrier

  /*Do computation into my portion of work array */
  work[iam] = ...;

  /*  Announce that I am done with my work
   *  The first flush ensures that my work is

* made visible before sync.
   *  The second flush ensures that sync is made visible.
   */
  #pragma omp flush(work)
  sync[iam] = 1;
  #pragma omp flush(sync)

  /*Wait for neighbor*/
  neighbor = (iam>0 ? iam : omp_get_num_threads()) - 1;
  while (sync[neighbor]==0) {
    #pragma omp flush(sync)
  }

  /*Read neighbor's values of work array */
  ... = work[neighbor];
}
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int x, *p = &x;

void f1(int *q)
{
  *q = 1;
  #pragma omp flush
  // x, p, and *q are flushed
  //   because they are shared and accessible

// q is not flushed because it is not shared.
}

void f2(int *q)
{

#pragma omp barrier
  *q = 2;
  #pragma omp barrier
  // a barrier implies a flush
  // x, p, and *q are flushed
  //   because they are shared and accessible

// q is not flushed because it is not shared.
}

int g(int n)
{
  int i = 1, j, sum = 0;
  *p = 1;
  #pragma omp parallel reduction(+: sum) num_threads(10)
  {
    f1(&j);
    // i, n and sum were not flushed
    //   because they were not accessible in f1
    // j was flushed because it was accessible
    sum += j;
    f2(&j);
    // i, n, and sum were not flushed
    //   because they were not accessible in f2
    // j was flushed because it was accessible
    sum += i + j + *p + n;
  }
  return sum;
}
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A.15 Determining the Number of Threads Used
Consider the following incorrect example (for Section 3.1.2 on page 37):

The omp_get_num_threads() call returns 1 in the serial section of the code, so

np will always be equal to 1 in the preceding example. To determine the number of

threads that will be deployed for the parallel region, the call should be inside the

parallel region.

The following example shows how to rewrite this program without including a

query for the number of threads:

A.16 Using Locks
In the following example, (for Section 3.2 on page 41) note that the argument to the

lock functions should have type omp_lock_t , and that there is no need to flush it.

The lock functions cause the threads to be idle while waiting for entry to the first

np = omp_get_num_threads(); /* misplaced */
#pragma omp parallel for schedule(static)
  for (i=0; i<np; i++)
    work(i);

#pragma omp parallel private(i)
{
  i = omp_get_thread_num();
  work(i);
}
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critical section, but to do other work while waiting for entry to the second.The

omp_set_lock function blocks, but the omp_test_lock function does not,

allowing the work in skip() to be done.

#include <omp.h>
int main()
{
  omp_lock_t lck;
  int id;

  omp_init_lock(&lck);
  #pragma omp parallel shared(lck) private(id)
  {
    id = omp_get_thread_num();

    omp_set_lock(&lck);
    printf("My thread id is %d.\n", id);
// only one thread at a time can execute this printf
    omp_unset_lock(&lck);

    while (! omp_test_lock(&lck)) {
      skip(id);   /* we do not yet have the lock,
                     so we must do something else */
    }
    work(id);      /* we now have the lock
                      and can do the work */
    omp_unset_lock(&lck);
  }

omp_destroy_lock(&lck);
}
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A.17 Using Nestable Locks
The following example (for Section 3.2 on page 41) demonstrates how a nestable lock

can be used to synchronize updates both to a whole structure and to one of its

members.

#include <omp.h>
typedef struct {int a,b; omp_nest_lock_t lck;} pair;

void incr_a(pair *p, int a)
{
  // Called only from incr_pair, no need to lock.
  p->a += a;
}

void incr_b(pair *p, int b)
{
  // Called both from incr_pair and elsewhere,
  // so need a nestable lock.

  omp_set_nest_lock(&p->lck);
  p->b += b;
  omp_unset_nest_lock(&p->lck);
}

void incr_pair(pair *p, int a, int b)
{
  omp_set_nest_lock(&p->lck);
  incr_a(p, a);
  incr_b(p, b);
  omp_unset_nest_lock(&p->lck);
}

void f(pair *p)
{
  extern int work1(), work2(), work3();
  #pragma omp parallel sections
  {
    #pragma omp section
      incr_pair(p, work1(), work2());
    #pragma omp section
      incr_b(p, work3());
  }
}
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A.18 Nested for Directives
The following example of for directive nesting (Section 2.9 on page 33) is compliant

because the inner and outer for directives bind to different parallel regions:

A following variation of the preceding example is also compliant:

#pragma omp parallel default(shared)
{
  #pragma omp for
    for (i=0; i<n; i++) {
      #pragma omp parallel shared(i, n)
      {
        #pragma omp for
          for (j=0; j<n; j++)
            work(i, j);
      }
   }
}

#pragma omp parallel default(shared)
{
  #pragma omp for
    for (i=0; i<n; i++)
      work1(i, n);
}

void work1(int i, int n)
{
  int j;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
      for (j=0; j<n; j++)
        work2(i, j);
  }
  return;
}
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A.19 Examples Showing Incorrect Nesting of
Work-sharing Directives
The examples in this section illustrate the directive nesting rules. For more

information on directive nesting, see Section 2.9 on page 33.

The following example is noncompliant because the inner and outer for directives

are nested and bind to the same parallel directive:

The following dynamically nested version of the preceding example is also

noncompliant:

void wrong1(int n)
{

#pragma omp parallel default(shared)
  {
      int i, j;
      #pragma omp for
      for (i=0; i<n; i++) {
         #pragma omp for
           for (j=0; j<n; j++)
             work(i, j);
      }
   }
}

void wrong2(int n)
{
  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++)
         work1(i, n);
  }
}

void work1(int i, int n)
{
  int j;
  #pragma omp for
    for (j=0; j<n; j++)
      work2(i, j);
}
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The following example is noncompliant because the for and single directives are

nested, and they bind to the same parallel region:

The following example is noncompliant because a barrier directive inside a for
can result in deadlock:

void wrong3(int n)
{
  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++) {
        #pragma omp single
          work(i);
      }
  }
}

void wrong4(int n)
{
  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++) {
        work1(i);
        #pragma omp barrier
        work2(i);
      }
  }
}
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The following example is noncompliant because the barrier results in deadlock

due to the fact that only one thread at a time can enter the critical section:

The following example is noncompliant because the barrier results in deadlock

due to the fact that only one thread executes the single section:

A.20 Binding of barrier Directives
The directive binding rules call for a barrier directive to bind to the closest

enclosing parallel directive. For more information on directive binding, see

Section 2.8 on page 32.

In the following example, the call from main to sub2 is compliant because the

barrier (in sub3) binds to the parallel region in sub2. The call from main to sub1 is

compliant because the barrier binds to the parallel region in subroutine sub2.

void wrong5()
{
  #pragma omp parallel
  {
    #pragma omp critical
    {
       work1();
       #pragma omp barrier
       work2();
    }
  }
}

void wrong6()
{
  #pragma omp parallel
  {
    setup();
    #pragma omp single
    {
      work1();
      #pragma omp barrier
      work2();
    }
    finish();
  }
}
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The call from main to sub3 is compliant because the barrier does not bind to any

parallel region and is ignored. Also note that the barrier only synchronizes the

team of threads in the enclosing parallel region and not all the threads created in

sub1.

int main()
{
  sub1(2);
  sub2(2);

sub3(2);
}

void sub1(int n)
{
  int i;
  #pragma omp parallel private(i) shared(n)
  {
    #pragma omp for
    for (i=0; i<n; i++)
      sub2(i);
  }
}

void sub2(int k)
{
  #pragma omp parallel shared(k)
    sub3(k);
}

void sub3(int n)
{
  work(n);
  #pragma omp barrier
  work(n);
}
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A.21 Scoping Variables with the private
Clause
The values of i and j in the following example are undefined on exit from the parallel

region:

For more information on the private clause, see Section 2.7.2.1 on page 25.

int i, j;
i = 1;
j = 2;
#pragma omp parallel private(i) firstprivate(j)
{
  i = 3;
  j = j + 2;
}
printf("%d %d\n", i, j);
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A.22 Using the default(none) Clause
The following example distinguishes the variables that are affected by the

default(none) clause from those that are not:

For more information on the default clause, see Section 2.7.2.5 on page 28.

A.23 Examples of the ordered Directive
It is possible to have multiple ordered sections with a for specified with the

ordered clause. The first example is noncompliant because the API specifies the

following:

“An iteration of a loop with a for construct must not execute the same

ordered directive more than once, and it must not execute more than

one ordered directive.” (See Section 2.6.6 on page 22)

int x, y, z[1000];
#pragma omp threadprivate(x)

void fun(int a) {
  const int c = 1;
  int i = 0;

  #pragma omp parallel default(none) private(a) shared(z)
  {

int j = omp_get_num_thread();
//O.K.  - j is declared within parallel region

a = z[j];   // O.K.  - a is listed in private clause
//       - z is listed in shared clause

x = c; // O.K.  - x is threadprivate
//       - c has const-qualified type

z[i] = y; // Error - cannot reference i or y here

#pragma omp for firstprivate(y)
            for (i=0; i<10 ; i++) {

z[i] = y; // O.K. - i is the loop control variable
// - y is listed in firstprivate clause

        }
        z[i] = y; // Error - cannot reference i or y here
  }
}
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In this noncompliant example, all iterations execute 2 ordered sections:

The following compliant example shows a for with more than one ordered section:

#pragma omp for ordered
for (i=0; i<n; i++) {

...
#pragma omp ordered
{ ... }
...
#pragma omp ordered
{ ... }
...

}

#pragma omp for ordered
for (i=0; i<n; i++) {

...
if (i <= 10) {

...
#pragma omp ordered
{ ... }

}
...
if (i > 10) {

...
#pragma omp ordered
{ ... }

}
...

}
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A.24 Example of the private Clause
The private clause (Section 2.7.2.1 on page 25) of a parallel region is only in effect

for the lexical extent of the region, not for the dynamic extent of the region.

Therefore, in the example that follows, any uses of the variable a within the for
loop in the routine f refers to a private copy of a, while a usage in routine g refers to

the global a.

int a;

void f(int n) {

a = 0;

#pragma omp parallel for private(a)
for (int i=1; i<n; i++) {

a = i;
 g(i, n);

d(a); // Private copy of “a”
...

}
...
}
void g(int k, int n) {

h(k,a); //The global “a”, not the private “a” in f
}
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A.25 Examples of the copyprivate Data
Attribute Clause
Example 1: The copyprivate clause (Section 2.7.2.8 on page 32) can be used to

broadcast values acquired by a single thread directly to all instances of the private

variables in the other threads.

If routine init is called from a serial region, its behavior is not affected by the

presence of the directives. After the call to the get_values routine has been executed

by one thread, no thread leaves the construct until the private objects designated by

a, b, x, and y in all threads have become defined with the values read.

float x, y;
#pragma omp threadprivate(x, y)

void init( ) {
float a;
float b;

    #pragma omp single copyprivate(a,b,x,y)
    {
        get_values(a,b,x,y);
    }

    use_values(a, b, x, y);
}
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Example 2: In contrast to the previous example, suppose the read must be

performed by a particular thread, say the master thread. In this case, the

copyprivate clause cannot be used to do the broadcast directly, but it can be used

to provide access to a temporary shared object.

float read_next( ) {
float * tmp;
float return_val;

      #pragma omp single copyprivate(tmp)
      {
        tmp = (float *) malloc(sizeof(float));
      }

      #pragma omp master
      {
        get_float( tmp );
      }

      #pragma omp barrier
      return_val = *tmp;
      #pragma omp barrier

      #pragma omp single
      {
       free(tmp);
      }

return return_val;
}
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Example 3: Suppose that the number of lock objects required within a parallel region

cannot easily be determined prior to entering it. The copyprivate clause can be

used to provide access to shared lock objects that are allocated within that parallel

region.

#include <omp.h>

omp_lock_t *new_lock()
{
omp_lock_t *lock_ptr;

     #pragma omp single copyprivate(lock_ptr)
     {
      lock_ptr = (omp_lock_t *) malloc(sizeof(omp_lock_t));
      omp_init_lock( lock_ptr );
     }

return lock_ptr;
}
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A.26 Using the threadprivate Directive
The following examples demonstrate how to use the threadprivate directive

(Section 2.7.1 on page 23) to give each thread a separate counter.

Example 1:

Example 2:

A.27 Use of C99 Variable Length Arrays
The following example demonstrates how to use C99 Variable Length Arrays (VLAs)

in a firstprivate directive (Section 2.7.2.2 on page 26).

int counter = 0;
#pragma omp threadprivate(counter)

int sub()
{
  counter++;
  return(counter);
}

int sub()
{
  static int counter = 0;
  #pragma omp threadprivate(counter)
  counter++;
  return(counter);
}

void f(int m, int C[m][m])
{
  double v1[m];
  ...
  #pragma omp parallel firstprivate(C, v1)
  ...
}
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A.28 Use of num_threads Clause
The following example demonstrates the num_threads clause (Section 2.3 on page

8). The parallel region is executed with a maximum of 10 threads.

#include <omp.h>
main()
{
  omp_set_dynamic(1);
  ...
  #pragma omp parallel num_threads(10)
  {
     ... parallel region ...
  }
}
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A.29 Use of Work-Sharing Constructs Inside a
critical Construct
The following example demonstrates using a work-sharing construct inside a

critical construct. This example is compliant because the work-sharing construct

and the critical construct do not bind to the same parallel region.

void f()
{
  int i = 1;
  #pragma omp parallel sections
  {
    #pragma omp section
    {
      #pragma omp critical (name)
      {
        #pragma omp parallel
        {
          #pragma omp single
          {
            i++;
          }
        }
      }
    }
  }
}
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A.30 Use of Reprivatization
The following example demonstrates the reprivatization of variables. Private

variables can be marked private again in a nested directive. They do not have to

be shared in the enclosing parallel region.

A.31 Thread-Safe Lock Functions
The following C++ example demonstrates how to initialize an array of locks in a

parallel region by using omp_init_lock (Section 3.2.1 on page 42).

int i, a;
...
#pragma omp parallel private(a)
{
  ...
  #pragma omp parallel for private(a)
  for (i=0; i<10; i++)
     {
       ...
     }
}

#include <omp.h>

omp_lock_t *new_locks()
{
  int i;
  omp_lock_t *lock = new omp_lock_t[1000];
  #pragma omp parallel for private(i)
  for (i=0; i<1000; i++)
  {
    omp_init_lock(&lock[i]);
  }
  return lock;
}
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APPENDIX B

Stubs for Run-time Library
Functions

This section provides stubs for the run-time library functions defined in the OpenMP

C and C++ API. The stubs are provided to enable portability to platforms that do not

support the OpenMP C and C++ API. On these platforms, OpenMP programs must

be linked with a library containing these stub functions. The stub functions assume

that the directives in the OpenMP program are ignored. As such, they emulate serial

semantics.

Note – The lock variable that appears in the lock functions must be accessed

exclusively through these functions. It should not be initialized or otherwise

modified in the user program. Users should not make assumptions about

mechanisms used by OpenMP C and C++ implementations to implement locks

based on the scheme used by the stub functions.
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#include <stdio.h>
#include <stdlib.h>
#include "omp.h"
#ifdef __cplusplus
extern “C” {
#endif

void omp_set_num_threads(int num_threads)
{
}

int omp_get_num_threads(void)
{
  return 1;
}

int omp_get_max_threads(void)
{
  return 1;
}

int omp_get_thread_num(void)
{
  return 0;
}

int omp_get_num_procs(void)
{
  return 1;
}

void omp_set_dynamic(int dynamic_threads)
{
}

int omp_get_dynamic(void)
{
  return 0;
}

int omp_in_parallel(void)
{
  return 0;
}

void omp_set_nested(int nested)
{
}
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int omp_get_nested(void)
{
  return 0;
}

enum {UNLOCKED = -1, INIT, LOCKED};

void omp_init_lock(omp_lock_t *lock)
{
  *lock = UNLOCKED;
}

void omp_destroy_lock(omp_lock_t *lock)
{
  *lock = INIT;
}

void omp_set_lock(omp_lock_t *lock)
{
  if (*lock == UNLOCKED) {
    *lock = LOCKED;
  } else if (*lock == LOCKED) {
    fprintf(stderr, "error: deadlock in using lock variable\n");
    exit(1);
  } else {
    fprintf(stderr, "error: lock not initialized\n");
    exit(1);
  }
}

void omp_unset_lock(omp_lock_t *lock)
{
  if (*lock == LOCKED) {
    *lock = UNLOCKED;
  } else if (*lock == UNLOCKED) {
    fprintf(stderr, "error: lock not set\n");
    exit(1);
  } else {
    fprintf(stderr, "error: lock not initialized\n");
    exit(1);
  }
}
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int omp_test_lock(omp_lock_t *lock)
{
  if (*lock == UNLOCKED) {
    *lock = LOCKED;
    return 1;
  } else if (*lock == LOCKED) {
    return 0;
  } else {
    fprintf(stderr, "error: lock not initialized\n");
    exit(1);
  }
}

#ifndef OMP_NEST_LOCK_T
typedef struct {  /* This really belongs in omp.h */
    int owner;
    int count;
} omp_nest_lock_t;
#endif

enum {MASTER = 0};

void omp_init_nest_lock(omp_nest_lock_t *lock)
{
  lock->owner = UNLOCKED;
  lock->count = 0;
}

void omp_destroy_nest_lock(omp_nest_lock_t *lock)
{
  lock->owner = UNLOCKED;
  lock->count = UNLOCKED;
}

void omp_set_nest_lock(omp_nest_lock_t *lock)
{
  if (lock->owner == MASTER && lock->count >= 1) {
    lock->count++;
  } else if (lock->owner == UNLOCKED && lock->count == 0) {
    lock->owner = MASTER;
    lock->count = 1;
  } else {

fprintf(stderr, "error: lock corrupted or not initialized\n");
    exit(1);
  }
}
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void omp_unset_nest_lock(omp_nest_lock_t *lock)
{
  if (lock->owner == MASTER && lock->count >= 1) {
    lock->count--;
    if (lock->count == 0) {
      lock->owner = UNLOCKED;
    }
  } else if (lock->owner == UNLOCKED && lock->count == 0) {
    fprintf(stderr, "error: lock not set\n");
    exit(1);
  } else {

fprintf(stderr, "error: lock corrupted or not initialized\n");
    exit(1);
  }
}

int omp_test_nest_lock(omp_nest_lock_t *lock)
{
  omp_set_nest_lock(lock);
  return lock->count;
}

double omp_get_wtime(void)
{
/* This function does not provide a working

wallclock timer. Replace it with a version
customized for the target machine.

*/
return 0.0;

}

double omp_get_wtick(void)
{
/* This function does not provide a working

clock tick function. Replace it with
a version customized for the target machine.

*/
return 365. * 86400.;

}

#ifdef __cplusplus
}
#endif
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APPENDIX C

OpenMP C and C++ Grammar

C.1 Notation
The grammar rules consist of the name for a non-terminal, followed by a colon,

followed by replacement alternatives on separate lines.

The syntactic expression termopt indicates that the term is optional within the

replacement.

The syntactic expression termoptseq is equivalent to term-seqopt with the following

additional rules:

term-seq :

term

term-seq term

term-seq , term
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C.2 Rules
The notation is described in section 6.1 of the C standard. This grammar appendix

shows the extensions to the base language grammar for the OpenMP C and C++

directives.

/* in C++ (ISO/IEC 14882:1998) */

statement-seq:

statement

openmp-directive

statement-seq statement

statement-seq openmp-directive

/* in C90 (ISO/IEC 9899:1990) */

statement-list:

statement

openmp-directive

statement-list statement

statement-list openmp-directive

/* in C99 (ISO/IEC 9899:1999) */

block-item:

declaration

statement

openmp-directive
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statement:

/* standard statements */

openmp-construct

openmp-construct:

parallel-construct

for-construct

sections-construct

single-construct

parallel-for-construct

parallel-sections-construct

master-construct

critical-construct

atomic-construct

ordered-construct

openmp-directive:

barrier-directive

flush-directive

structured-block:

statement

parallel-construct:

parallel-directive structured-block

parallel-directive:

# pragma omp parallel parallel-clauseoptseq new-line

parallel-clause:

unique-parallel-clause

data-clause
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unique-parallel-clause:

if ( expression )

num_threads ( expression )

for-construct:

for-directive iteration-statement

for-directive:

# pragma omp for for-clauseoptseq new-line

for-clause:

unique-for-clause

data-clause

nowait

unique-for-clause:

ordered

schedule ( schedule-kind )

schedule ( schedule-kind , expression )

schedule-kind:

static

dynamic

guided

runtime

sections-construct:

sections-directive section-scope

sections-directive:

# pragma omp sections sections-clauseoptseq new-line

sections-clause:

data-clause

nowait

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28



Appendix C OpenMP C and C++ Grammar 89

section-scope:

{ section-sequence }

section-sequence:

section-directiveopt structured-block

section-sequence section-directive structured-block

section-directive:

# pragma omp section new-line

single-construct:

single-directive structured-block

single-directive:

# pragma omp single single-clauseoptseq new-line

single-clause:

data-clause

nowait

parallel-for-construct:

parallel-for-directive iteration-statement

parallel-for-directive:

# pragma omp parallel for parallel-for-clauseoptseq new-line

parallel-for-clause:

unique-parallel-clause

unique-for-clause

data-clause

parallel-sections-construct:

parallel-sections-directive section-scope

parallel-sections-directive:

# pragma omp parallel sections parallel-sections-clauseoptseq new-line
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parallel-sections-clause:

unique-parallel-clause

data-clause

master-construct:

master-directive structured-block

master-directive:

# pragma omp master new-line

critical-construct:

critical-directive structured-block

critical-directive:

# pragma omp critical region-phraseopt new-line

region-phrase:

( identifier )

barrier-directive:

# pragma omp barrier new-line

atomic-construct:

atomic-directive expression-statement

atomic-directive:

# pragma omp atomic new-line

flush-directive:

# pragma omp flush flush-varsopt new-line

flush-vars:

( variable-list )

ordered-construct:

ordered-directive structured-block

ordered-directive:

# pragma omp ordered new-line
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declaration:

/* standard declarations */

threadprivate-directive

threadprivate-directive:

# pragma omp threadprivate ( variable-list ) new-line

data-clause:

private ( variable-list )

copyprivate ( variable-list )

firstprivate ( variable-list )

lastprivate ( variable-list )

shared ( variable-list )

default ( shared )

default ( none )

reduction ( reduction-operator : variable-list )

copyin ( variable-list )

reduction-operator:

One of: + * - & ^ | && ||

/* in C */

variable-list:

identifier

variable-list , identifier

/* in C++ */

variable-list:

id-expression

variable-list , id-expression

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26



92 OpenMP C/C++ • Version 2.0  March 20021



93

APPENDIX D

Using the schedule Clause

A parallel region has at least one barrier, at its end, and may have additional barriers

within it. At each barrier, the other members of the team must wait for the last

thread to arrive. To minimize this wait time, shared work should be distributed so

that all threads arrive at the barrier at about the same time. If some of that shared

work is contained in for constructs, the schedule clause can be used for this

purpose.

When there are repeated references to the same objects, the choice of schedule for a

for construct may be determined primarily by characteristics of the memory

system, such as the presence and size of caches and whether memory access times

are uniform or nonuniform. Such considerations may make it preferable to have each

thread consistently refer to the same set of elements of an array in a series of loops,

even if some threads are assigned relatively less work in some of the loops. This can

be done by using the static schedule with the same bounds for all the loops. In

the following example, note that zero is used as the lower bound in the second loop,

even though k would be more natural if the schedule were not important.

In the remaining examples, it is assumed that memory access is not the dominant

consideration, and, unless otherwise stated, that all threads receive comparable

computational resources. In these cases, the choice of schedule for a for construct

depends on all the shared work that is to be performed between the nearest

preceding barrier and either the implied closing barrier or the nearest subsequent

#pragma omp parallel
{
#pragma omp for schedule(static)

for(i=0; i<n; i++)
    a[i] = work1(i);
#pragma omp for schedule(static)
  for(i=0; i<n; i++)
    if(i>=k) a[i] += work2(i);
}
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barrier, if there is a nowait clause. For each kind of schedule, a short example

shows how that schedule kind is likely to be the best choice. A brief discussion

follows each example.

The static schedule is also appropriate for the simplest case, a parallel region

containing a single for construct, with each iteration requiring the same amount of

work.

The static schedule is characterized by the properties that each thread gets

approximately the same number of iterations as any other thread, and each thread

can independently determine the iterations assigned to it. Thus no synchronization

is required to distribute the work, and, under the assumption that each iteration

requires the same amount of work, all threads should finish at about the same time.

For a team of p threads, let ceiling(n/p) be the integer q, which satisfies n = p*q - r with

0 <= r < p. One implementation of the static schedule for this example would

assign q iterations to the first p–1 threads, and q-r iterations to the last thread.

Another acceptable implementation would assign q iterations to the first p-r threads,

and q-1 iterations to the remaining r threads. This illustrates why a program should

not rely on the details of a particular implementation.

The dynamic schedule is appropriate for the case of a for construct with the

iterations requiring varying, or even unpredictable, amounts of work.

The dynamic schedule is characterized by the property that no thread waits at the

barrier for longer than it takes another thread to execute its final iteration. This

requires that iterations be assigned one at a time to threads as they become available,

with synchronization for each assignment. The synchronization overhead can be

reduced by specifying a minimum chunk size k greater than 1, so that threads are

assigned k at a time until fewer than k remain. This guarantees that no thread waits

at the barrier longer than it takes another thread to execute its final chunk of (at

most) k iterations.

#pragma omp parallel for schedule(static)
for(i=0; i<n; i++) {
  invariant_amount_of_work(i);
}

#pragma omp parallel for schedule(dynamic)
  for(i=0; i<n; i++) {
    unpredictable_amount_of_work(i);
  }
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The dynamic schedule can be useful if the threads receive varying computational

resources, which has much the same effect as varying amounts of work for each

iteration. Similarly, the dynamic schedule can also be useful if the threads arrive at

the for construct at varying times, though in some of these cases the guided
schedule may be preferable.

The guided schedule is appropriate for the case in which the threads may arrive at

varying times at a for construct with each iteration requiring about the same

amount of work. This can happen if, for example, the for construct is preceded by

one or more sections or for constructs with nowait clauses.

Like dynamic , the guided schedule guarantees that no thread waits at the barrier

longer than it takes another thread to execute its final iteration, or final k iterations if

a chunk size of k is specified. Among such schedules, the guided schedule is

characterized by the property that it requires the fewest synchronizations. For chunk

size k, a typical implementation will assign q = ceiling(n/p) iterations to the first

available thread, set n to the larger of n-q and p*k, and repeat until all iterations are

assigned.

When the choice of the optimum schedule is not as clear as it is for these examples,

the runtime schedule is convenient for experimenting with different schedules and

chunk sizes without having to modify and recompile the program. It can also be

useful when the optimum schedule depends (in some predictable way) on the input

data to which the program is applied.

To see an example of the trade-offs between different schedules, consider sharing

1000 iterations among 8 threads. Suppose there is an invariant amount of work in

each iteration, and use that as the unit of time.

If all threads start at the same time, the static schedule will cause the construct to

execute in 125 units, with no synchronization. But suppose that one thread is 100

units late in arriving. Then the remaining seven threads wait for 100 units at the

barrier, and the execution time for the whole construct increases to 225.

#pragma omp parallel
{
  #pragma omp sections nowait
  {
    // ...
  }
  #pragma omp for schedule(guided)
  for(i=0; i<n; i++) {
      invariant_amount_of_work(i);
  }
}
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Because both the dynamic and guided schedules ensure that no thread waits for

more than one unit at the barrier, the delayed thread causes their execution times for

the construct to increase only to 138 units, possibly increased by delays from

synchronization. If such delays are not negligible, it becomes important that the

number of synchronizations is 1000 for dynamic but only 41 for guided , assuming

the default chunk size of one. With a chunk size of 25, dynamic and guided both

finish in 150 units, plus any delays from the required synchronizations, which now

number only 40 and 20, respectively.
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APPENDIX E

Implementation-Defined
Behaviors in OpenMP C/C++

This appendix summarizes the behaviors that are described as “implementation-

defined” in this API. Each behavior is cross-referenced back to its description in the

main specification. An implementation is required to define and document its

behavior in these cases, but this list may be incomplete.

■ Number of threads: If a parallel region is encountered while dynamic adjustment

of the number of threads is disabled, and the number of threads requested for the

parallel region exceeds the number that the run-time system can supply, the

behavior of the program is implementation-defined (see page 9).

■ Number of processors: The number of physical processors actually hosting the

threads at any given time is implementation-defined (see page 10).

■ Creating teams of threads: The number of threads in a team that execute a nested

parallel region is implementation-defined.(see page 10).

■ schedule(runtime): The decision regarding scheduling is deferred until run

time. The schedule type and chunk size can be chosen at run time by setting the

OMP_SCHEDULEenvironment variable. If this environment variable is not set, the

resulting schedule is implementation-defined (see page 13).

■ Default scheduling: In the absence of the schedule clause, the default schedule is

implementation-defined (see page 13).

■ ATOMIC: It is implementation-defined whether an implementation replaces all

atomic directives with critical directives that have the same unique name

(see page 20).

■ omp_get_num_threads : If the number of threads has not been explicitly set by

the user, the default is implementation-defined (see page 9, and Section 3.1.2 on

page 37).

■ omp_set_dynamic : The default for dynamic thread adjustment is

implementation-defined (see Section 3.1.7 on page 39).
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■ omp_set_nested : When nested parallelism is enabled, the number of threads

used to execute nested parallel regions is implementation-defined (see

Section 3.1.9 on page 40).

■ OMP_SCHEDULEenvironment variable: The default value for this environment

variable is implementation-defined (see Section 4.1 on page 48).

■ OMP_NUM_THREADSenvironment variable: If no value is specified for the

OMP_NUM_THREADSenvironment variable, or if the value specified is not a

positive integer, or if the value is greater than the maximum number of threads

the system can support, the number of threads to use is implementation-defined

(see Section 4.2 on page 48).

■ OMP_DYNAMICenvironment variable: The default value is implementation-

defined (see Section 4.3 on page 49).
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APPENDIX F

New Features and
Clarifications in Version 2.0

This appendix summarizes the key changes made to the OpenMP C/C++

specification in moving from version 1.0 to version 2.0. The following items are new

features added to the specification:

■ Commas are permitted in OpenMP directives (Section 2.1 on page 7).

■ Addition of the num_threads clause. This clause allows a user to request a

specific number of threads for a parallel construct (Section 2.3 on page 8).

■ The threadprivate directive has been extended to accept static block-scope

variables (Section 2.7.1 on page 23).

■ C99 Variable Length Arrays are complete types, and thus can be specified

anywhere complete types are allowed, for instance in the lists of private ,

firstprivate , and lastprivate clauses (Section 2.7.2 on page 25).

■ A private variable in a parallel region can be marked private again in a nested

directive (Section 2.7.2.1 on page 25).

■ The copyprivate clause has been added. It provides a mechanism to use a

private variable to broadcast a value from one member of a team to the other

members. It is an alternative to using a shared variable for the value when

providing such a shared variable would be difficult (for example, in a recursion

requiring a different variable at each level). The copyprivate clause can only

appear on the single directive (Section 2.7.2.8 on page 32).

■ Addition of timing routines omp_get_wtick and omp_get_wtime similar to

the MPI routines. These functions are necessary for performing wall clock timings

(Section 3.3.1 on page 44 and Section 3.3.2 on page 45).

■ An appendix with a list of implementation-defined behaviors in OpenMP C/C++

has been added. An implementation is required to define and document its

behavior in these cases (Appendix E on page 97).

■ The following changes serve to clarify or correct features in the previous OpenMP

API specification for C/C++:
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■ Clarified that the behavior of omp_set_nested and omp_set_dynamic
when omp_in_parallel returns nonzero is undefined (Section 3.1.7 on page

39, and Section 3.1.9 on page 40).

■ Clarified directive nesting when nested parallel is used (Section 2.9 on page

33).

■ The lock initialization and lock destruction functions can be called in a parallel

region (Section 3.2.1 on page 42 and Section 3.2.2 on page 42).

■ New examples have been added (Appendix A on page 51).
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